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Glossary 
 

This section presents an overview of terms frequently used in sampling literature for readers less 

familiar with these. We use the same terminology here in the report. The definitions are derived 

from (De Gruijter et al., 2006). 

 

aliquot:   material taken from a sampling unit. 

composite:   aliquots bulked together. 

domain (of interest): specification of the part(s) of the sampling universe for which a separate 

result is required. 

monitoring:  collecting information on an object through repeated or continuous 

observation in order to determine possible changes in the object. 

sampling location:  position of a sampling unit in space. 

sample size:   number of selected sampling units. 

sample support:  geometry of the sampling units in a continuous universe. 

sampling frame:  representation of the sampling universe. This can be a map in form of a GIS 

layer that represents the area to be sampled and from which locations are 

selected.  

sampling pattern:  positions of all sampling units of a sample selected from the sampling frame 

following a design type. 

sampling unit:   single part of the universe that can be selected for sampling. 

sampling universe:  precise definition of the universe of interest with boundaries in space 

(and/or time), possibly a specification of exclusions. Also referred to as 

‘target universe’. 

survey: collecting information on an object with a spatial extent through 

observation. 

target parameter: type of statistic for which a result is needed given the target variable and 

domain(s).  

target variable:  precise definition of the variable(s) to be determined for each sampling unit. 
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1. Introduction 
 

The Soils4Africa project aims to build a soil information system (SIS) that will provide data at 

trans-continental level that is relevant for a variety of stakeholders involved in sustainable 

intensification of agricultural production in Africa. These users not only include individuals working 

in policy support or decision making, private sector, extension services, and (inter)national 

research institutes, but also international partnerships such as the Global Soil Partnership and 

inter-governmental platforms such as LEAP4FNSSA, research programs on sustainable 

intensification such the EU SFS-2019-2020-35 Scope A, and digital agricultural service providers 

such as the EU H2020 project AfriCultuReS. (Fatunbi and Abishek, 2020) provide an extensive 

overview of Soils4Africa stakeholders.  

An extensive, continent-wide soil dataset should  underpin the SIS, as well as the products and 

services provided by it, This dataset will contain field observations and analytical data on a wide 

variety of soil properties and soil quality indicators (Moinet et al., 2021) to be collected from about 

20,000 sampling locations spread across the agricultural lands of Africa. This report describes the 

design of the Soils4Africa sampling scheme on basis of which the soil aliquots will be collected in 

the field. We note that `sampling design’ defines the approach for selecting sampling locations, it 

does not provide guidelines on how soil aliquots are taken in the field. The latter is defined by 

sampling protocols that will be considered elsewhere (Soils4Africa project deliverable D3.5).  

The type of sampling scheme is determined by the aim of the data collection. So before one starts 

designing a sampling scheme one should determine what information is needed: different 

information needs typically ask for different sampling schemes. De Gruijter et al. (2006) divide 

information needs for survey and monitoring into two broad groups. In the first group, the aim is to 

obtain estimates of global quantities, i.e. parameters of the cumulative distribution function of the 

target variable(s) for the entire sampling universe (the population). These parameters include the 

mean, median or other quantiles of the distribution (e.g. 5%, 95%) for instance. In the second 

group, the aim is to obtain some kind of description of the spatial (and/or temporal) variation of 

the target variable(s) within the sampling universe. An example is the estimation of quantities for 

sub-areas of the sampling universe, referred to as local quantities. At the extreme the aim is 

prediction of values at points in the universe, for instance, at the nodes of a discretization grid that 

covers the universe as is typically done for (digital) soil mapping.  

Summarizing, for the first group the aim is to quantify global quantities in space (and/or time) and 

for the second group local quantities in space (and/or time). Thus, a first decision when designing a 

sampling scheme is on the type of quantities that are required: are global quantities required or 

local quantities, or perhaps both. When local quantities are required, then one should decide for 

which sub-areas within the sampling universe separate results are required. Are these relatively 

large, e.g. different land cover classes within a country, or (very) small, e.g. agricultural fields or 

even points. When the primary interest is in global quantities and local quantities for large sub-

areas, the information need typically pertains to estimates of means, totals or areal fractions of the 

target variables and the main aim of the survey is thus estimation. For local quantities  for (very) 

small sub-areas, the main aim of the survey is mapping (prediction). 

From the information need follows the choice of a sampling approach that is defined as a 

combination of a mode for sampling unit selection and a mode of statistical inference from sample 

data. Here we can distinguish two approaches that are fundamentally different: design-based and 

model-based approaches for sampling and statistical inference. Once a choice is made for a 

sampling approach, an appropriate design type can be chosen that defines how sampling units will 

be selected from the sampling universe. Finally, a sampling algorithm is used to select a pre-

http://www.fao.org/global-soil-partnership/en/
https://www.leap4fnssa.eu/
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defined number of sampling units given the design type. But it all starts with a clearly defined 

purpose. In case there are several objectives, a compromise needs to be achieved that can best 

meet all the objectives.  

The main purpose of the Soils4Africa project is to collect, develop and share baseline information 

on the prevalence and spatial distribution of soil quality indicators and constraints 

relevant for sustainable intensification of agriculture in Africa. In addition, it should lay the 

foundation of a soil monitoring network that allows changes in soil conditions and soil quality 

over time to be quantified, for instance as a result of soil management interventions to permit 

evaluation of the impact of interventions aiming at sustainable intensification.  

A secondary purpose is to develop digital (gridded) soil maps of soil properties and soil quality 

indicators for the agricultural land in Africa from the collected data. 

Chapter 2 is a methodological chapter that further elaborates on sampling design concepts that 

were already briefly touched upon in this chapter, and major decisions one needs to make when 

designing a sampling scheme. In chapter 3 we provide a brief review of the LUCAS and AfSIS 

sampling designs. Chapter 4 translates the purpose of the project to an information need and then 

describes the design of the Soils4Africa sampling scheme with which this information need can be 

met. Statistical sampling approaches for monitoring are addressed in Chapter 5. 
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2. Designing sampling schemes for spatial survey  
 

In this methodological chapter we provide an overview of some fundamental decisions that need to 

be made when designing a sampling scheme for spatial survey. These pertain to the basic methods 

for selecting sampling units and statistical inference and how these relate to the purpose of the 

sampling campaign and information need (global versus local quantities). This choice of sampling 

approach defines the basic framework of the sampling scheme and guides further design decisions 

such as the choice of a design type. In addition, we address three more topics that are relevant in 

the context of the Soils4Africa project. These are stratification, sampling of sub-areas and use of 

ancillary data. 

 

Selection and inference methods 

De Gruijter et al. (2006) distinguish three possible modes for selecting sampling units: 

convenience sampling, purposive sampling and probability sampling that we briefly 

summarize here: 

• Convenience sampling: sampling units are selected based on convenience such as for 

instance easily accessible spots such as road sides. The advantage is that it is resource 

efficient. The disadvantage is that the statistical properties are inferior compared to other 

selection methods. 

• Purposive sampling: sampling units are selected in such a way that a given purpose is best 

served. The free survey method traditionally used for soil mapping is an example of 

purposive sampling. Sampling locations are selected in such a way, subjectively and based 

on experience, that these are most informative for delineation of soil classes. Another 

example of purposive sampling is feature space coverage sampling that can be used for 

selecting sampling locations for digital soil mapping (Ma et al., 2020; Wadoux et al., 2019). 

The purpose of this design is to cover feature (covariate) space as good as possible to allow 

for efficient calibration of prediction models. For geostatistical surveys, sampling units can 

also be selected purposively, for instance, to minimize prediction uncertainty as quantified 

by the prediction error variance (kriging variance). The advantage is optimal selection for a 

given purpose. The disadvantage is that the variance of estimators for means and  totals of 

the study area as a whole and of sub-areas cannot be quantified without making modelling 

assumptions. 

• Probability sampling: random selection of sampling units according to a well-defined 

sampling design so that the probabilities of selecting the sampling units, the inclusion 

probabilities, are known; these probabilities need to be larger than zero for all 

population units but need not to be equal. The advantage of probability sampling is that 

it enables model-free, design-based statistical inference, i.e. no modelling assumptions 

need to be made in estimation of the means (totals) of the study area and of sub-areas. On 

the other hand probability samples can also be used in model-based statistical inference, 

for instance to predict the means of small sub-areas from which no data are collected, or 

for mapping through prediction at the nodes of a fine discretization grid. Hereafter we will 

give more details about design-based and model-based inference. So probability sampling 

is more flexible than non-probability sampling (convenience sampling, purposive sampling) 

as it enables both design-based and model-based inference, where non-probability samples 

can only be used for model-based inference. The main (operational) disadvantage is that it 

puts stringent requirements on field work. There is no free choice in deciding which 

sampling locations are visited. Selected sampling locations must be visited even when 

these are at inconvenient locations. If a sampling location cannot be reached or when 
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permission is denied by the land owner, then the location must either be treated as non-

response, or be replaced by a back-up location, selected beforehand. That location could be 

at considerable distance from the current location. Taking a sample at a convenient 

location, for instance in a neighboring field, is not allowed.     

Besides selection method, one needs to choose a mode for statistical inference from the sample 

data. De Gruijter et al. (2006) distinguish two that are fundamentally different: design-based 

inference and model-based inference. In the design-based approach, inference is based on the 

inclusion probabilities of the sampling units. Hence, design-based inference requires probability 

sampling. The inclusion probabilities are known for all selected units. and are used as weights in 

the statistical inference (estimation). Unbiased point-estimators of the quantities of interest are 

available, as well as valid confidence intervals of these quantities. The simplest random selection 

method is Simple Random Sampling. With this sampling design all possible samples of size n have 

the same probability of being selected  As a consequence all locations have the same inclusion 

probability and the sample mean of the observed (or measured) values at the sampling locations is 

an  unbiased estimator of the mean of the target properties  

Model-based predictions of the values at points or the means of sub-areas also are weighted 

averages of the sample data but in this case weights are determined by a stochastic model of the 

variation in the sampling universe and the sample pattern. Such a model is for instance a model 

with a constant mean or a mean that is a linear combination of covariates, and  spatially correlated 

residuals used in geostatistics. In that case, the weights of the data are computed from the 

covariances between the observation points and the covariances between the observation points 

and a prediction point, that are a function of the spatial coordinates. For model-based inference, 

purposive sampling is most appropriate, but probability samples can also be used in model-based 

inference. See Brus (2021) for a more elaborate explanation of design-based and model-based 

methods and some persistent misconceptions about these. 

De Gruijter et al. (2006) define a sampling method or approach as a combination of a method for 

selecting of sampling units and a method for statistical inference. The design-based approach 

combines probability sampling with design-based inference and the model-based method combines 

purposive sampling with model-based inference. The choice of a sampling approach is guided by 

the purpose of the data collection and the information need. As we have seen in Chapter 1, the 

information need can be categorized in two broad groups: global quantities in space (and or 

time) and local quantities in space (and or time).  

 

Global versus local quantities 

De Gruijter et al. (2006) define ‘global quantities’ as the spatial cumulative distribution function of 

the target variable(s) in the sampling universe, or quantities that can be derived of this function 

such as the mean, median or other quantiles, standard deviation. Global quantities can be defined 

in space, time or space-time, though here we limit ourselves to global quantities in space for now. 

Examples of global quantities in space are the total organic carbon stock of the agricultural lands in 

Africa, the mean topsoil zinc content in a farming system, or the areal fraction of a country that is 

affected by soil erosion. 

Besides interest in the sampling universe as a whole, interest may also be in sub-areas of the 

sampling universe that are referred to as domains (of interest) for which separate estimates are 

required. De Gruijter et al. (2006) refer to these domain-specific quantities as ‘local quantities’. For 

instance, for a soil organic carbon stock assessment in a country (the sampling universe) we might 

not only be interested in the total stock of that country, but we might also be interested to obtain 

the stocks for each land cover class that occurs in a country. The land cover classes are in this case 



Soils4Africa D3.2B | Soils4Africa Sampling Design 

 

47 
This project has received funding from the 

EU Horizon 2020 Research and Innovation Programme  

under Grant Agreement 862900 

the domains; domains of interest are also referred to as reporting units, i.e., the unit for which we 

wish to report separate results. Sub-areas can be large such as land cover classes or farming 

systems, but can also be small or very small. Think for instance about all agricultural fields in the 

sampling universe.  

For both quantities there are design-based as well as model-based sampling approaches available. 

De Gruijter et al. (2006) provide an elaborate overview of these in Chapters 7 and 8. The suitability 

of the design-based and model-based methods for spatial survey depends amongst others on the 

spatial resolution for which estimates are required with at one end of the spatial resolution 

continuum the entire sampling universe and at the other end of this continuum a single point in the 

universe. Broadly speaking, as De Gruijter et al. (2006) explain in Chapter 6, design-based 

methods are most appropriate when estimates of target quantities are required for the entire 

universe or large domains within the universe. When domains become smaller and more numerous 

(in a sense that these cannot all be sampled individually anymore, hence estimation for each 

individual small-area domain is not possible or becomes impractical) model-based methods that 

rely on prediction, such as geostatistical methods, become more suitable. 

Besides the resolution of the result there are more factors that influence the choice for a design 

(Brus and De Gruijter, 1997; De Gruijter et al., 2006): 

• should the estimation of global quantities of the target population be unbiased? Design-

based method guarantee against bias in sampling that can arise in convenience or 

purposive sampling. 

• should the accuracy of the estimates be quantified objectively (in the form of a standard 

error or confidence interval), i.e. without having to make any (model-)assumptions about 

the spatial variation? If objective assessment of accuracy of the estimates is key, then 

design-based methods are preferred. 

• is random sampling practically feasible? If this is not, then purposive sampling with 

model-based inference should be considered. 

• is a reliable model of the spatial variation available? Only if this is the case then model-

based methods can be considered. 

• is there substantial spatial autocorrelation of? Only if this is the case then model-based 

methods can be considered. 

Summarizing, when the aim of the spatial survey is estimation of global quantities (means and 

totals) or local quantities for (large) domains of interest then design-based methods based on 

probability sampling and design-based inference are preferred. If the aim of the survey is 

prediction (mapping) for points, then model-based methods based on purposive (non-probability) 

sampling and model-based inference are preferred. For estimating quantities of numerous (small) 

sub-areas both approaches are in principle suitable. An interesting alternative for the latter could 

also be the model-assisted approach that we further describe in section ‘Use of ancillary data’ 

hereafter. We further discuss the choice for a basic sample selection and statistical inference 

method for the Soils4Africa sampling given the overall objective of the project in Chapter 4. 

Besides sampling for estimating means and totals and sampling for mapping, we can distinguish 

sampling for monitoring that includes besides a spatial a temporal dimension. Monitoring soil 

conditions is not part of the current project. However, because the Soils4Africa sampling design 

aims to provide a basis for future monitoring, we elaborate on general sampling approaches for 

monitoring in Chapter 5. Once a choice is made for the sampling approach, a design type must be 

chosen. 
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Design types 

Once a choice is made for a sampling approach (design-based or model-based), one needs to 

select a design type. The design type defines how sampling locations are selected. De Gruijter et 

al. (2006) provide an elaborate overview of a great variety of design types for design- and model-

based methods for global quantities in space (Chapter 7) and design- and model-based methods 

for local quantities in space (Chapter 8), as does Brus (in prep). Furthermore, Brus (2019) presents 

and illustrates with R code various non-probability sampling approaches for mapping. We, 

therefore, do not repeat such elaborate overview here and limit ourselves to a few examples 

including those that are relevant for Soils4Africa. 

Sampling for estimating means and totals 

When the aim of the spatial survey is to estimate means and totals for the sampling universe and 

domains of interest within that universe then design-based methods based on probability sampling 

are preferred. There are probability sampling design types that we highlight here: simple random 

sampling, stratified simple random sampling and two-stage cluster random sampling following De 

Gruijter et al. (2006). Figure 1 shows notional examples of these three designs. 

Simple random sampling. This is the most basic design type. There are no restrictions put on the 

selection of sampling units besides that the sample size is fixed. All sampling units are selected 

with equal probability and independently from each other. The advantage of this design is that the 

implementation is simple as is the statistical inference. Furthermore, because of its simplicity the 

design is very flexible and sample sizes can be easily adapted. Disadvantages include its efficiency: 

the sampling variance is usually larger than that of other design types at the same costs. This is 

because i) the spatial coverage may be poor (especially when sample sizes are small) and ii) 

visiting the sampling locations may be more time-consuming for logistical reasons because of the 

irregular distribution across the sampling area, resulting in higher-per sample costs and thus 

smaller sample size given a fixed budget. A larger sampling variance results in wider confidence 

intervals of the target quantities. Another important disadvantage is that estimation of local 

quantities for domains of interest may not be possible since one cannot control the sample size in 

each domain. It is therefore possible that there are domains without any samples. 

Stratified simple random sampling. With stratified simple random sampling the sampling universe 

is partitioned into sub-areas, called strata. Within every stratum, a fixed and pre-determined 

number of sampling units are selected with simple random sampling. The number of sampling units 

per stratum should sum to the total sample size that is also pre-determined. Stratified simple 

random sampling typically results in a smaller sampling variance (i.e. more accurate estimates) for 

a given sample size compared to simple random sampling when the strata are chosen in such a 

way that the sum of squares between strata is larger than the weighted sum of sum of squares 

within strata (Lohr, 1999). Stratification provides important controls on the selection on sampling 

units and is often used for spatial surveys and therefore merits more detailed attention in this 

report. This is provided in the next section of this chapter. 

Two-stage cluster random sampling. Like with stratified random sampling, the sampling universe is 

partitioned in sub-areas. However, the partitioning is not based on the reporting units, neither on 

expected differences in the mean of the study variable among the sub-areas. The sub-areas are 

compact polygons serving the selection of spatial clusters of sampling units. The difference with 

stratified sampling is that not all sub-areas are sampled, but that sampling is restricted to a limited 

set of randomly selected sub-areas. The selected sub-areas are referred to as primary sampling 

units (PSUs). Within each primary unit a pre-determined number of sampling units is selected that 

are then visited. These units are referred to as the secondary sampling units (SSUs). The most 

simple selection technique for both primary and secondary units is simple random sampling. Other 

techniques, however, could also be considered. One could select PUs with stratified random 



Soils4Africa D3.2B | Soils4Africa Sampling Design 

 

49 
This project has received funding from the 

EU Horizon 2020 Research and Innovation Programme  

under Grant Agreement 862900 

sampling and SUs with systematic random sampling to give just an example, resulting in 

compound design types. A two-stage cluster design can be generalized to multistage cluster 

random sampling following the same selection principles. 

The advantage of two-stage cluster random sampling is its operational efficiency through the 

clustering of sampling sites within PUs that greatly reduces travel time between locations in the 

field with a large spatial extent of the study area, as in Soils4Africa. A disadvantage is that spatial 

clustering of sampling units generally leads to a lower precision of the estimates of the target 

quantities.  

For simple random sampling only one design attribute needs to be chosen (sample size) and for 

stratified simple random sampling three (definition of the strata, total sample size and allocation of 

sample sizes to the strata). Two-stage cluster random sampling adds additional complexity to the 

design. Five design attributes need to be chosen: definition of the PUs, selection mode of the PUs 

(with or without replacement), selection probabilities of the PUs (equal or proportional to size), the 

number of PUs to be selected in the first stage and the number of (secondary) sampling units in 

the PUs. 

 
Figure 1. National examples of sampling patterns based on simple random sampling (left), stratified random sampling (middle), 

two-stage cluster random sampling (right). Adapted from De Gruijter et al. (2006). 

Sampling for mapping 

When the main purpose of a spatial survey is mapping, i.e. target properties need to be quantified 

for numerous small domains that cannot be sampled individually, think for instance of agricultural 

fields or when the aim is to predict the study variable at the nodes of a fine grid, a model-based 

approach is most advantageous. Probability sampling then is not necessary and could even be 

suboptimal. For mapping it could be advantageous to have good spatial coverage across the 

sampling universe or to have good coverage of the covariate space in case ancillary data are used 

in the statistical models used for mapping such as in regression-kriging (Kempen et al., 2019) or 

machine learning (Hengl et al., 2017). Design types frequently used for mapping are spatial 

coverage sampling and conditioned Latin hypercube sampling (cLHS); Figure 2 shows examples. 

But more design types exist that are elaborately described by De Gruijter et al. (2006) and Brus 

(2019). Ma et al. (2020) and Wadoux et al. (2019) compare the efficiency of several designs for 

mapping. 

Spatial coverage sampling. This design optimizes sample allocation across geographic space in such 

a way that the sampling universe is covered as regularly as possible. This can be achieved by 

clustering prediction locations into geographic sub-areas that are as compact as possible with the 

number of clusters equal to the sample size. The sampling locations are then formed by the 

centroids of the geographic clusters. For clustering, algorithms such as k-means can be used.  
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Figure 2. Examples of a spatial coverage (left) and cLHS (right) design. Reproduced from Brus (2019). 

Conditioned Latin hypercube sampling. Samples are selected in such a way that the marginal 

frequency distributions of the quantitative environmental features in the sampling universe (as 

represented by maps) are reproduced by the sample as closely as possible (Minasny and 

McBratney, 2006). To this end for each feature, marginal strata are constructed using equally 

spaced quantiles of the marginal distribution, so that all marginal strata contain an equal number 

of pixels. Optimization algorithms are subsequently used to select samples across all marginal 

strata. Though frequently applied for (digital) soil mapping, Ma et al. (2020) and Wadoux et al. 

(2019) show that in their case studies feature space coverage sampling is more efficient. 

 

Stratification 

Rationale and basic principles 

Some form of stratification of the sampling universe is often used when designing a sampling 

scheme. There are two main reasons for stratification (De Gruijter et al., 2006): 

• to increase the efficiency of the sampling design. One obtains smaller sampling variance at 

the same costs (i.e. same number of sampling locations) compared to simple random 

sampling. This means that the estimates of the target quantities (means, totals, areal 

fractions) become more precise. 

• to obtain separate estimates for sub-areas within the sampling universe, the so-called 

domains of interest for which we wish to report separate results. These could for instance 

be countries, farming systems, agro-ecological zones etc. The domains are then used as 

strata in the design. 

An attractive property of stratification is that one can control the sample size of the strata. This 

is especially important when one is interested in domain estimates. If one does not use a domain 

as a stratum, then there is a chance that this domain will not be sampled. This is especially a 

problem when the total sample size is small (low sampling intensity) and when there are domains 

with a relatively small surface area. 

For increasing efficiency of the sampling design, the stratification variables should be associated 

with the target soil properties, i.e. these should explain some of the spatial variation of these 

properties. Variation of target properties, expressed in sum of squares, within strata should be 

smaller than between strata. A soil class map could for instance be a good candidate for 

stratification when the aim is statistical soil survey since we expect that variation of key soil 

properties within soil classes is smaller than between soil classes. Using a soil map for stratification 
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could thus serve both purposes: to increase efficiency of the design for estimating global means, as 

well as to delineate sub-areas of which we wish separate estimates. 

De Gruijter et al. (2006) caution that stratification should be done carefully. They explain that 

inappropriate stratification, that may occur when stratum means differ little, or when sample sizes 

of the strata that are strongly disproportional to the areas of the strata can result in a loss in 

efficiency (i.e. estimators become less precise). Disproportional sample sizes can occur if one has 

many small strata in combination with a relatively small total sample size. The minimum sample 

size of a stratum is two, to allow unbiased estimation of the sampling variance of the estimated 

population mean. This minimum sample size may further impair the proportional allocation of the 

sample size to the strata. 

Stratification using cross-classification 

It can very well be that one is interested in obtaining estimates of domains of interest that belong 

to different partitions of the sampling universe. One partitioning could for instance be on basis of 

soil classes using a soil map with n classes (domains), while another partitioning could be on basis 

of land cover classes using a land cover map with m classes (domains). Estimates are required for 

all domains of both partitions that are n + m in total.   

The standard solution in case of multiple stratification variables is to define strata as cross-

classification classes. Each stratum is then defined as a unique combination of classes of the 

stratifying variables. In the above example this will result in n x m cross-classes (the Cartesian 

product), though in reality often not all class combinations will exist.  

The main drawback of a cross-classification approach is that the number of classes can quickly 

become very large. Two variables with 15 classes each already yield a maximum of 225 cross-

classes, many of which could be small area strata. Having many cross-classes require large total 

sample sizes that cannot always be permitted. And with a minimum of two sampling locations per 

stratum there can be a large risk of disproportional allocation when total sample size is relatively 

small, as described in previous section. 

Multi-way stratification 

Survey literature provides an attractive alternative for cross-classification in the form of multi-way 

stratification (Falorsi and Righi, 2008). Multi-way stratification allows us to select planned sample 

sizes for domains of two or more partitions of the sample universe without making use of cross-

class strata. We explored multi-way stratification for the Soils4Africa sampling design (see Chapter 

4) but finally decided not to implement this form of stratification because estimation of the 

sampling variance of the estimated means of domains is rather complicated. Nevertheless, we 

believe it is worthwhile to explain the basic principles here because multi-way stratification is an 

elegant solution for dealing with multiple stratification variables.  

A notional example of two-way stratification is shown in Figure 3. Here two maps are used for 

stratification. One map has four map units serving as domains of interest (Figure 3, left), the other 

three (Figure 3, right). The planned sample size for each of the domains of map A is six, and for 

those of the domains of map B, eight. The actual samples are selected (randomly) in such a way 

that the planned sample sizes for each of the domains is respected. Figure 3 shows the selected 

sampling units outlined in black. It also shows that not all cross-class strata are sampled in this 

case: cross-class strata A1 x B3 is not sampled in this example. From the selected sampling units 

we can estimate our target quantities for the entire sampling universe as well as for each of the 

seven individual domains. 
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Figure 3. Notional example of a two-way stratified random sample. Reproduced from Brus (in prep). 

 

Multi-way stratification is a constrained (multi-dimensional) optimization problem of the inclusion 

probabilities of the population units. The total sample size is given, as well as the planned sample 

sizes for each domain. In case all cross-classification strata are non-empty, i.e. contain at least one 

population unit  as in Figure 3, the optimal inclusion probability of a population unit can be 

computed as the optimal sample size of the cross-classification stratum of that unit, divided by the 

total number of units in that cross-classification stratum. This results in equal inclusion probabilities 

for all units of a cross-classification stratum. The optimal sample size can also apportioned 

proportional to a  covariate related to the soil property of interest, leading to variable inclusion 

probabilities. The optimal sample size of a cross-classification stratum can be computed as the 

product of the marginal sample sizes (sample sizes of the individual strata) divided by the total 

sample size. For instance, suppose that we need to select 100 sampling locations planned as 

follows: 75 in soil class S1 and 25 in soil class S2 and 50 in land cover class L1 and 50 in land 

cover class L2. Then the optimal sample sizes for the cross-strata S1xL1 and S1xL2 are 50 x 75 / 

100 = 37.5 and for the cross-strata S2xL1 and S2xL2 25/27/100 = 12.5. These optimal sample 

sizes then must be divided by the number of population units in a cross-classification stratum to 

obtain the optimal inclusion probabilities. If one or more cross-classification strata are empty, 

optimization of the inclusion probabilities becomes more complicated. 

Sampling unit selection with a multi-way stratification algorithm is accomplished in two main steps. 

First, the inclusion probabilities of the sampling units are optimized in such a way that these result 

in sample sizes that are as close as possible to the planned sample sizes of all domains of interest. 

Simulated annealing, a generic and widely-used optimization algorithm, can be used for this 

purpose. Second, a sample is selected based on the optimized inclusion probabilities. Sample 

selection can be done with a balanced sampling approach (Falorsi and Righi, 2008; Brus, 2015). 

Balanced sampling ensures that the samples size of each of the domains of interest are equal to 

the planned  sample sizes. 

 

Sampling of sub-areas and estimation of local quantities 

Sampling of sub-areas, or domains of interest, of the sampling universe to be able to estimate or 

predict local quantities in space merits some further attention. As we have seen in the second 

section of this chapter, the size of the individual sub-areas guides the fundamental choice of a 

design-based versus a model-based approach to sampling and inference. For large sub-areas, for 

instance dominant land cover classes in a country, a design-based approach involving probability 

sampling is preferred (sampling for estimating means, totals and areal fractions), whereas for 

relatively small sub-areas (that cannot all be sampled), for instance all farmers’ fields in a regional 
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model-based approach that relies on a statistical model of the spatial variation of a soil property is 

preferred (sampling for mapping). Here we focus on design-based estimation of means, totals and 

areal fractions for sub-areas, following De Gruijter et al. (2006; Section 8.2) who distinguish three 

situations.  

The first is when the domains of interest are known at the beginning of the survey and one can 

afford a reasonable sample size for each domain. In this situation it is recommended to use the 

domains as strata and sample each domain separately. This has the great advantage that one can 

control the sample size in each domain and thus ensure that each domain is sampled. 

The second situation is when a map depicting the domains of interest is not used for selecting 

sampling locations, i.e. for stratification but the number of sampling locations in the domains is 

large enough to obtain a reliable estimate of the means of the domains from the domain-specific 

data only. This is for instance the case when one wants to avoid the use of multiple stratification 

variables resulting in a (too) large number of cross-classification classes. In that case one will only 

select one map for stratification instead of two or more. It is a misconception that if a domain of 

interest is not used as a stratum for whatever reason, one cannot obtain (approximately) unbiased 

and valid estimates of the target quantities for that domain. De Gruijter et al. (2006) present 

various estimators for this situation. Note that the number of sampling units in a domain of interest 

not used as a stratum, is uncontrolled. The sample size can be very small or even zero. In case the 

sample size of a domain is sufficiently large, the mean of that domain can best be estimated by the 

ratio estimator. In this estimator of the domain mean the total of a domain is divided by the 

estimated area of that domain. This ratio estimator is also recommended in case the area of a 

domain is known because it is more accurate than the usual (Horvitz-Thompson) estimator. Further 

note that the true area of a land cover type or farming system is actually unknown even when a 

map of that land cover type is available. A map only gives the mapped area based on a model that 

contains impurities. If the actual land cover type is recorded for each Soils4Africa sampling location 

then the mean soil organic carbon content for the observed land cover types can be estimated with 

the ratio-estimator.  

The third situation deals with estimation for small-area domains that are not well represented in 

the sample. Even in this case, if quantitative and/or qualitative covariates are available it is still 

possible to estimate the mean of these domains by the generalized regression estimator (De 

Gruijter et al, 2006; Brus, in prep.).  

Summarizing, preferably one should use domains of interest as strata. In this way one can control 

the sample size in each domain. When this is not feasible or impractical, it is still possible to obtain 

estimates for these domains, even when these are not well represented in the sample. 

 

Use of ancillary data 

Ancillary data, in form of GIS layers of environmental properties, can be a great asset when 

designing a sampling scheme for spatial survey in the design-based approach. Such data cannot 

only be used in the sample selection stage but also in the estimation stage.  

Selection stage 

An obvious use of ancillary data in the selection stage is for stratification, as we have seen in the 

previous sections. Stratification, if done properly, can improve performance of the sampling 

strategy.  

Another use of ancillary data that we have not discussed before is for spreading sampling units in 

covariate (feature) space. This can be done with a technique referred to as the local pivotal 

method (Grafström et al., 2012; Brus, 2021). With this method we can ensure that a probability 
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sample is well spread in the space spanned by the scaled covariates. Think, for instance, of 

selecting a probability sample covering the space spanned by  relevant environmental variables, for 

instance elevation and slope, and/or climatic gradients, for instance mean annual precipitation and 

mean annual temperature.  

Estimation stage 

Besides at the selection stage, ancillary data can also be used a posteriori, after the data are 

collected, at the estimation stage. The great advantage of using ancillary data that are correlated 

with the target variables for estimation is that it can increase the accuracy of the estimates. This 

type of statistical inference is referred to  as model-assisted inference (Särndal el al, 1992; Brus 

2021). Model-assisted inference requires probability sampling and yields approximately unbiased 

and valid estimates of target quantities.  

Model-assisted estimators are for instance the post-stratification estimator which exploits a 

qualitative (categorical) ancillary variable, and the regression estimator which exploits  one or 

more quantitative ancillary covariates (Brus, 2000, De Gruijter et al. 2006). Newer developments 

include use of statistical learning techniques, such as the random forest model, in model-assisted 

estimators (Brus, 2021). 
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3. The LUCAS and AfSIS-LDSF sampling designs 
 

The call under which the Soils4Africa project was proposed asked for the development of a soil 

database with standard soil properties following a procedure similar to the one used for the EU 

LUCAS database. For this purpose we reviewed the sampling designs of LUCAS and LUCAS Topsoil 

to investigate if there are elements in these designs that we could use for a Soils4Africa sampling 

scheme. A second, Africa-specific, monitoring network that is of interest for this purpose and worth 

noting here is the Land Degradation Surveillance Framework (LDSF) that was developed in the first 

phase of the Africa Soil Information Service (AfSIS) project. 

 

LUCAS and LUCAS Soil 

Land Use/Cover Area frame Survey (LUCAS) 

The Land Use/Cover Area frame Survey (LUCAS) is a network to monitor changes in land use and 

land cover across the member states of European Union (EU). The first survey was held in 2001, 

covering 13 of the 15 members of the EU at that time. Over time the LUCAS network expanded 

covering all 28 member states in 2018. The sampling design was adapted several times after the 

first survey with the latest major update in 2018 for the 2018 survey. Below we briefly describe the 

sampling design that was used from 2006 onwards.  

The LUCAS sample is two-phase sample. In the first phase a square point grid is randomly selected 

with a spacing of 2 km covering the member states of the EU territory. This grid is the LUCAS 

‘master sample’ (or sampling frame) and contains about 1.1 million geo-referenced points 

(EUROSTAT, 2018). In the second phase, a subset of the master is selected containing 25 to 30% 

of the master sampling units. For the 2018 survey, sample size was 330,000.  

Up to 2018, selection of sampling locations in the second phase was done as follows. The points of 

the master grid are stratified according to seven land cover classes (‘STR05’), as identified from 

aerial photos or satellite imagery. Prior to stratified sub-sampling of the master grid, the grid is 

divided into square blocks of 9 x 9 points to avoid clustering of sampling sites (Gallego and Delincé, 

2010). The 81 points contained in a block are subsequently numbered in such a way that spatial 

clustering of successive numbers within a block is avoided. The numbering is achieved by 

implementation of the following algorithm (Brus et al., 2011): 

1. Select first point simple randomly (this point receives number 1). 

2. Select second point randomly from group of points at maximum distance from first point. 

3. Select third until 81th point randomly from group of points that maximizes the minimum 

distance to points already selected.  

In the above algorithm the distance between two points is not simply computed as the Euclidian 

distance. This would lead to a concentration of small numbers near the edge, and consequently to 

a concentration of sampling points near the edges of the squares. Instead, distances are defined in 

such a way as to avoid concentrations along the edges while at the same time ensuring numbering 

is fully random. The distance definition used is given by Brus et al. (2011). The authors also 

provide two examples of the random numbering within a block and show, through simulations, that 

the selection probability is equal for all 81 points in the block. The randomization of the numbers is 

done only once, meaning that the randomization in all blocks is identical. The set of points with the 

same number (i.e. position) in each block is referred to as replicate (Gallego and Delincé, 2010).  

A stratified sub-sample is selected from the master grid by seven land cover classes and NUTS2 

region. Strata are sampled with different densities. The strata ‘arable land’, ‘permanent crops’ and 
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‘grassland’ are sub-sampled more intensively than the other land cover types. Sampling units are 

selected by selecting complete sets of replicates, starting with replicate 1. This means that first all 

points that fall in stratum h with replicate number 1 are selected. Followed by all points in stratum 

h with replicate number 2. This is continued until the remainder of points to be selected to 

complete the sampling size for stratum h, nh, is smaller than the number of points in the next 

replicate. The remainder is then selected simple randomly from this replicate. 

For LUCAS 2018 the second phase sampling design was redesigned (Ballin et al., 2018). The 

‘Gallego’ design to avoid spatial clustering was abandoned. The land cover stratification of 2005 

was updated (‘STR18’) and in addition two new stratification variables were introduced: the Corine 

Land Cover class (‘CLC’) and elevation class (‘ELEV’). From these three variables, cross-class (or 

atomic) strata were calculated as the Cartesian product of the three variables (STR18 x CLC x 

ELEV) for each NUTS2 region. Cross-classification of stratification variables can potentially result in 

a very large number of cross-classes (equal to the number of unique combinations of the classes of 

the stratification variables). This was also the case for the LUCAS cross-classification. In a next 

step, a sophisticated but highly complex optimization algorithm was used to group the atomic 

strata in such a way that the total sample sizes and allocation were compliant to a set of precision 

constraints. The optimization procedure is described in detail by Ballin et al. (2018). For LUCAS 

2018, this new stratification approach resulted in 19,962 strata, with 55 (Luxembourg) to 2,172 

(Spain) strata per country. 

LUCAS Soil 

The LUCAS Topsoil Survey adds a third phase to the sampling design. LUCAS Soil is a 10% sub-

sample of LUCAS, resulting in about 20,000 sampling sites (Figure 4). Though the sub-sampling 

methodology is described in Tóth et al. (2013a), it remains unclear how this phase was exactly 

implemented. Four terrain attributes (altitude, slope, curvature and aspect, all derived from SRTM 

digital elevation model) and land cover (derived from Corine Land Cover 2000) were used for 

stratification of the LUCAS points. Each terrain attribute was classified into eight classes, each with 

an equal surface area. Strata were then formed by The four terrain variables and land cover 

variable were cross-classified, resulting in about 20,000 strata each a unique combination of 

classes of the five input variables. The gridded strata were converted to vector format giving 

30,795 polygons. The polygon number was then associated to each LUCAS point and the number of 

points per polygon per land use calculated. Points were selected for sub-sampling if the number of 

points per land use type was larger than three. Next, the selected points per polygon were 

randomly grouped in triplets. 

  
Figure 4. Sampling locations of the 2018 LUCAS Soil survey (Orgiazzi et al., 2018) (left); design of a sampling plot (right). 

The LUCAS points within a polygon are used as primary sampling units in two-stage random 

sampling with the polygons serving as the primary sampling units and the triplets as secondary 
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sampling units. Sample sizes were set for combinations of land use and country and were 

proportional to the surface areas of the countries and main land use types within each country. 

From each triplet only one point is selected and sampled for observation. If the first point of a 

triplet is inaccessible, or for whatever reason unsuitable for soil sampling, another point is sampled 

et cetera. The soil surveyor is free to determine the order in which the points are visited in the 

field, which saves time needed for fieldwork, but compromises the computation of inclusion 

probabilities. If the number of triplets is smaller than the required sample size, more points are 

selected from the polygons containing more than six LUCAS points. Further details about how this 

is precisely done are not given by Tóth et al. (2013a). If the number of triplets exceeds the 

required sample size, those triplets are selected from the polygons of that specific land use that 

contain the largest number of LUCAS points. Note that the selection of primary sampling units is 

not random: the selection is targeted at the largest polygons. At each LUCAS Soil sampling site one 

aliquot is taken at the site centre and four aliquots 2 m in the cardinal directions from the site 

centre (Figure 4, right). The five soil aliquots are mixed to form a composite sample. 

Reflections 

LUCAS is a probability sampling design. The inclusion probabilities of the LUCAS points are 

perfectly known, and as a consequence unbiased design-based estimation of means and totals of 

reporting units is feasible. However, no unbiased estimator of the variance is available, due to the 

sampling design used in the first phase (systematic random sampling) and the second phase 

(cluster random sampling in a way that clusters are separated in geographical space). The variance 

can only be approximated. LUCAS 2018 redesign, however, is a (highly) complex design especially 

with respect to the stratification that results in a large number of strata. In the case of LUCAS, this 

large number of strata (in combination with a requirement of a minimum of two sampling units per 

stratum) is not an immediate problem as such, because of its large sample size but for smaller 

sample sizes, such as for Soils4Africa this could be the case. Besides, the complex implementation 

and statistical inference are making it a less suitable ‘blueprint’ for the Soils4Africa sampling 

design. 

As for LUCAS Soil, based on the available information, we conclude that the LUCAS Soil is a 

stratified two-stage (non-random) subsample of LUCAS 2009. We conclude that the inclusion 

probabilities of the LUCAS Soil points are not traceable, and besides there are points with inclusion 

probability 0. For that simple reason, design-based statistical inference for the estimation of means 

ant totals for the sampling universe and parts thereof, qualified as superior by Tóth et al. (2013b) 

(of which we fully agree), is not feasible. LUCAS Soil therefore does not provide a suitable 

framework for a similar sampling design in Africa. 

In their paper and report Tóth et al. (2013a, 2013b) compute sample means and sample standard 

deviations for land use/land cover categories within nine climate zones. For instance, mean and 

standard deviation of SOC concentration for annual croplands and for permanent croplands within 

each climate zones. The sample means are used as estimates of the subpopulation means. 

Differences in inclusion probabilities of the LUCAS points due to different sampling rates in the 

LUCAS strata, are not accounted for. In Fig. 6.38 of the report, showing mean C:N ratios for four 

land cover classes within four climate zones, also error bars are shown, representing the standard 

error of the estimated means. It is not explained how these standard errors were estimated. 

Possibly these are computed by the sample standard deviation divided by the square root of the 

sample size, which is quite a naive approach. 

In summary, we conclude that design-based estimation of the means of domains of interest and 

their variances from LUCAS Soil is not feasible. The only option is model-based inference using, for 

instance, a geostatistical model (kriging). The estimated means and their estimated standard 

errors as reported by Tóth et al. (2013a, 2013b) are model-based estimates, that follow from the 

assumption of independent data (i.e. a pure nugget variogram). The question is how realistic this 
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assumption is.  In any case such modelling assumptions can best be avoided. It is highly 

recommendable to select the sampling locations for monitoring the soil by a well-defined 

probability sampling design, so that means and totals of reporting units can be estimated either 

model-free by design-based inference, or by model-assisted inference. 

 

AfSIS Land Degradation Surveillance Framework  

The sampling design of the AfSIS Land Degradation Surveillance Framework (LDSF) was developed 

during the first phase of the AfSIS project. The design covers sixty ‘sentinel’ landscapes across 

Africa that are representative of the variation in climate, topography and vegetation of Sub-

Saharan Africa (SSA) (Vågen et al., 2010).  

A sentinel site is 10 x 10 km in size. Each site is divided into sixteen 2.5 x 2.5 km tiles. In each 

tile, the centroid of a sampling cluster is randomly located. The shape of a cluster is a circle with a 

564 m radius from the centroid. This gives the cluster a surface area of 10 ha. Within a cluster, ten 

sampling plots are randomly selected. Each plot measures 1000 m2 (0.1 ha) and is made up of four 

subplots that are 100 m2 (0.01 ha) in size and configured in a radial arm layout (Figure 5) (Vågen 

et al., 2010; Vågen and Winowiecki, 2020). A topsoil sample (0-20 cm) is collected from each 

subplot and a subsoil sample from the center of each subplot. The topsoil aliquots are pooled in a 

composite sample. 

 

 
Figure 5. The AfSIS LDSF sampling design. A sentinel site composed of sixteen tiles with each containing a cluster with ten 

sampling plots (left); a sampling plot (right). From (Vågen et al., 2010). 

The cluster centroid and the sampling plots are selected randomly, however, we conclude that the 

AfSIS LDSF sampling design is not a probability sampling design according to the definition given in 

section 2. This is because the inclusion (selection) probabilities of the sampling units (in this case 

subplots) are not known, i.e., cannot be calculated from the design. The design shows that we 

cannot assume equal inclusion probabilities. Inclusion probabilities of subplots will vary within a tile 

and will depend on where the cluster centroid will be selected. This is because the locations of 

possible sampling clusters are not fixed within a tile, i.e., the tile is not discretized into a fixed 

number of cluster of which one will be selected. Potential clusters, and thus sampling plots, can 

overlap in varying degrees with higher degrees of overlap in the center of the tile. Locations more 

towards the center or a tile have larger probability of being selected than locations closer to the tile 

boundary. This makes that it not possible to develop a sampling framework that lists all potential 

(discretized) sampling units with an inclusion probability for each of these. Design-based inference 
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is thus not possible. Note, however, that this is merely an observation and that by no means this 

should be read as criticism on the LDSF sampling design. Whether probability sampling and design-

based inference are desirable depends on the purpose of the data collection. For Soils4Africa, we 

aim to design a sampling scheme based on probability sampling (see Chapter 4) and in that 

context, the LDSF design as well as LUCAS Soil are less suitable to serve as examples. Though 

there are some elements of both designs that we can recycle to some extent. 
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4. Soils4Africa sampling design 
 

This chapter describes the proposed Soils4Africa sampling design. In Chapter 1 we formulated the 

overall aim of the Soils4Africa project as “to collect, develop and share baseline information on the 

prevalence and spatial distribution of soil indicators and constraints relevant for sustainable 

intensification of agriculture in Africa”. In addition, it should lay the foundation of a soil monitoring 

network that should allow to quantify changes in soil conditions and soil quality indicators over 

time, for instance as a result of soil management interventions. Based on this, we give the 

rationale for the choice for a sampling approach for sampling unit selection and statistical inference 

in the first section of this chapter. The second section gives an overview of the ancillary data we 

collected to support the design of the sampling scheme. The third section presents the sampling 

design, while the fourth section describes the refinement of the sampling universe considering 

disputed territories, fieldwork safety and protected areas. This chapter is concluded with a section 

that shows the implementation of the sampling design with an illustrated example for Kenya. 

 

Sampling approach 

The soils information collected in this project should provide a consistent baseline on the current 

status and spatial distribution of soil properties, indicators and constraints across agricultural lands 

in Africa in a consistent way. With ‘consistent’ we mean derived from a set of soil aliquots that are 

collected with uniform protocols, within one relatively short period of time (short in relation to the 

rate of soil change) and analyzed with one set of methods by one laboratory. The information will 

serve as a reference against which future observations can be compared to assess changes over 

time (monitoring).  

One prerequisite of the sampling design is that it should provide a framework to allow future 

monitoring of soil conditions. When monitoring, one is typically not concerned about what happens 

over time at one particular sampling location because this may not be indicative about what 

happens with the soil in general (on average) within a larger area in which for instance an 

intervention took place. One could compare this with running a series of fertilizer field trials for a 

specific crop, say maize. The outcome of the trial at one individual trial plot is not providing much 

information about the effectiveness of the fertilizer treatment compared to a control treatment. The 

observed effect could be a chance result rather than a true effect because of specific (and variable) 

conditions prevailing at the plots of a trial site at the time of the trial. What we would like to know 

in this case is whether or not the new treatment produced higher yields compared to the control on 

average in the maize-growing area, thus considering all trial locations. That will give a much better 

indication about the effectiveness of the new treatment. The same applies here, an individual soil 

sampling location is not a very relevant monitoring unit. A change that we might observe at a 

single location may not tell us much about what is happening on average in an area. Monitoring 

units are typically larger geographic areas that contain multiple sampling locations from which we 

can infer changes over time. These areas could be countries, regions within countries, land 

management zones, farming systems etc., or even all agricultural land in the continent.  

In Chapter 2 we distinguished two types of spatial survey that require different sampling 

approaches: sampling for estimating means and totals (i.e., assessing global quantities and local 

quantities for (large) area domains) and sampling for mapping (i.e., assessing local quantities for 

very small area domains and prediction at the nodes of a fine discretisation grid). Given the 

requirement of providing a statistical framework that allows future monitoring of soil conditions, 

the primary purpose of the Soils4Africa survey is to provide estimates of means and totals (and 

other relevant parameters that can be derived from the cumulative distribution function) of 
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selected soil properties and indicators for Africa’s agricultural land. But apart from providing 

baseline soil information at continental level, the SIS should also be able to provide information for 

sub-areas of the sampling universe. Relevant domains of interest for which we might wish to report 

separate results could for instance include the individual countries to support national and sub-

national level policy-making or national reporting requirements, or different agro-ecologies, 

farming systems or project intervention areas, in the continent or within countries. 

The vast expanse of Africa’s agricultural land (the sampling universe or population) with its great 

variety in soil conditions will be sampled at ‘only’ 20,000 locations. Because of the reference 

function of the information provided by the SIS, it is imperative that the estimates of the 

population parameters of the target variables are unbiased. This means that the values of these 

parameters are not systematically over- or underestimated. The sampling locations should thus be 

selected in such a way that the sampling means and totals give an unbiased assessment of the 

population means and totals. 

Besides the unbiasedness requirement, it is important that we can objectively assess the accuracy 

of the estimated target parameters (e.g. means, totals, areal fractions). We infer target 

parameters for a set of target soil variables from only a limited number of soil aliquots taken across 

the sampling universe. We do not know the true value of the parameters, we only have estimates. 

Hence, we are uncertain about the parameters. Each time we repeat our sampling the estimates 

will be (slightly) different. We can quantify our uncertainty with the sampling variance that 

provides us with a measure of variation of the estimated target parameters if the sampling would 

be repeated using the same sampling design for selecting samples. From the sampling variance we 

can compute confidence intervals. The sampling variance depends on the variation of the target 

soil variables in the sampling universe, the sampling design and the sample size. The larger the 

sample size, the more precise our estimates of the target parameters. 

The sampling variance is needed for statistical testing. For instance, when one wants to assess if 

the soil organic carbon content of farming system A is larger than that of farming system B. But 

also for monitoring it is key that we can quantify sampling variance. If we have measurements 

from two sampling times and we wish to test, with a defined level of statistical confidence, whether 

the changes we observe are real changes, i.e. changes in the population mean (total, areal 

fraction), , we need information about the sampling variances for both time periods. Furthermore, 

once the sampling variances and components of this variance (e.g., the contribution of the spatial 

variation of primary unit means to the sampling variance of the estimated population mean)  are 

known after the first round of sampling, these can be used to optimize sample sizes for subsequent 

sampling rounds leading to more efficient designs. Because of the importance of the sampling 

variance, its estimation should be unbiased and objective. Ideally we do not want to rely on any 

(model) assumptions to quantify our uncertainty about the target parameters that might question 

the validity of the assessment.  

Summarizing, primary purpose of the sampling is estimation of means and totals (and other 

relevant parameters that can be derived from the cumulative distribution function) of a set of 

target soil properties and soil quality indicators for the sampling universe and parts there-off. 

Furthermore, the estimates must be (approximately) unbiased and the sampling variance must be 

quantified objectively. In the Soils4Africa sampling design sampling units will be  selected by 

probability sampling enabling both design-based estimation of global and local means (totals) 

and model-based mapping. Once the sample data are collected and suitable ancillary data 

available, model-assisted estimation of global and local means  will be considered (see Chapter 2). 

It is important to note here that a choice for a design-based method does not rule out use of the 

data for mapping. Digital soil mapping models could still be developed from the collected data and 
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maps of soil properties and indicators for the agricultural land area produced even though the 

sampling design is not optimized for this specific purpose. 

 

Ancillary data 

A set of ancillary data, with continent-wide coverage, was collected to support the design of the 

sampling scheme and the statistical inference (see Chapter 2). These datasets include: 

• Administrative units level 0 (country) and level 11 (FAO, 2014). 

• World Reference Base Reference Soil Groups (IUSS WG WRB, 2006; Jones et al., 2013) 

• Major farming systems2 (Dixon et al., 2001) 

• Major farming systems level 1 and level 2 – update (Van Velthuizen et al., 2013; Dixon et 

al., 2019) 

• Agro-ecological characteristics (Van Velthuizen et al., 2013) 

• Land cover (Buchhorn, 2020) 

• Agro-ecological zones (Sebastian, 2009) 

• Length of growing season (Fischer et al., 2012; IIASA/FAO, 2012) 

• Digital elevation model (DEM; dataset) 

• Topographic wetness index (calculated from DEM) 

• Accessibility (Nelson, 2008). 

• Population density (CIESIN, 2018) 

• Protected areas; 3 layers (UNEP-WCMC, 2021) 

• Legacy soil point dataset (Batjes and Ribeiro, 2021) 

 

Sampling design 

Sampling universe 

In space, the sampling universe is broadly defined as the ‘agricultural land’ in continental Africa 

(note that for sample selection we will refine this definition somewhat). The agricultural land was 

mapped by the Soils4Africa project using satellite imagery from the Copernicus Global Land 

Service. Details of the agricultural land mapping are provided by (Huising et al., 2020). Figure 6 

shows a map of the agricultural land. This is a gridded (raster) map with a spatial resolution of 100 

m x 100 m. Each of these 1 ha pixels represents a sampling unit and could be selected for 

sampling the soil. In total there are almost 800 million of these units meaning that the agricultural 

land area according to this classification is about 8 million km2. We recognize here that the spatial 

extent of agricultural land will change with time and so the survey will not give information on 

areas that will be converted to agriculture in the future. The sampling universe, however, can be 

updated for future sampling rounds based on up-to-date information on land cover classification. 

Clustering of sampling units 

Like in the AfSIS-LDSF sampling design, we introduce some form of clustering of the 1ha sampling 

units. Clustering has great operational advantages in fieldwork. Once a location of a cluster is 

reached, multiple sampling sites can be visited. This greatly reduces travel time and hereby 

mitigates some of the risks inherent to a project that aims at continent-wide sampling within a 

relatively short amount of time. Besides, clustering sampling locations allows assessment of soil 

 
 

1 Outdated level 1 administrative boundaries were updated with administrative data from The Humanitarian Data Exchange 
(https://data.humdata.org/) 

 
2 To obtain a continental layer the farming systems maps of SSA and Nothern Africa were mosaicked and the legends harmonized. 

http://geomorphometry.org/content/mdem250m
https://data.humdata.org/
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variation at short distances that is to some extent controlled by different farm management 

practices. If we would not cluster, then this would not be possible given an average sampling 

density of one sampling locations per 400 km2. 

Clusters are formed by grouping the 1 ha sampling units. Here a cluster is defined as all 1 ha 

sampling units (100 m x 100 m pixels classified as agricultural land)  inside a 2000 m x 2000 m 

square. All clusters are unique and do not overlap and each 1 ha agricultural land pixel only 

belongs to one cluster. In this way we can define a total of 3.95 million clusters that cover the 

sampling universe. Each cluster contains between 1 and 400 1 ha agricultural land pixels (Figure 

7). The choice of the cluster size is somewhat arbitrary. It resembles the resolution of the LUCAS 

master grid and is close to the size of the AfSIS-LDSF sampling plots (2.5 x 2.5 km). Furthermore, 

the size is small enough that all sampling locations within a cluster are within walking distance 

which has operational advantages, and large enough that it captures variability at the landscape 

level. 

 
Figure 6.Map of agricultural land, with areas classified as ‘agriculture’ depicted in yellow (Huising et al, 2020) 

 

Sampling plot 

Like in LUCAS Soil and AfSIS-LDSF, composite samples will be taken. A Soils4Africa sampling plot 

measures 5 m x 5 m. In this sampling plot four soil aliquots are taken in the intercardinal 

directions from the plot center (i.e. the points where the soil aliquots are collected are at the centre 

of the four 2.5 m x 2.5 m sub-squares) that are combined in a composite sample. This means that 

the sample support is 5 m x 5 m. The measured values represent an average of the sampling 
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plot. Taking a composite sample has the advantage that some short-range variability which is 

irrelevant for our purpose is averaged out. 

A 5 m x 5 m plot is located within a single 1 ha agricultural land pixel. A 1 ha agricultural land pixel 

is discretized into 400 non-overlapping 5 m x 5m sampling plots (configured as a 20 x 20 matrix). 

Of these 400 plots, one is randomly selected for collecting soil aliquots, with equal probabilities for 

all 400 sampling plots.  

 
Figure 7.Map of primary sampling units (PSUs), legend indicates the number of 1 ha agricultural land pixels that each PSU 

contains. 

 

Design type 

From the above follows that we have three prerequisites for the sampling design: 

1. Sampling unit selection by probability sampling; 

2. Clustering of the population units that are represented by 1 ha agricultural land pixels; 

3. Composite sampling within a 5 m x 5 m sampling plot (the basic sampling unit) located 

within a population unit.  

From these requirements it becomes clear that we have three types of sampling units that are 

nested: 
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1. Cluster of agricultural land pixels 

2. Agricultural land pixels 

3. Sampling plots 

Each of these sampling units is a discrete entity in space. An obvious design type for such situation 

is multistage random sampling, in our case three-stage random sampling and this is the basic 

design type that was selected for the Soils4Africa sampling design. The sampling stages are 

defined as follows: 

• Stage 1: 2 km x 2 km clusters; each containing between 1 and 400 agricultural land pixels. 

The clusters form the primary sampling units (PSUs). 

• Stage 2: 100 m x 100 m pixels classified as agricultural land. The agricultural land pixels 

form the secondary sampling units (SSUs). Each SSU contains 400 sampling plots. 

• Stage 3: 5 m x 5 m plots; . The plots form the tertiary sampling units and are the basic 

sampling units. The soil in a selected plot is sampled at four points forming a square grid 

with a spacing of 2.5 m (Figure 8). 

Figure 8 gives a schematic representation of the three-stage random sampling design. Note that 

the 2 km x 2 km squares contain agricultural as well as non-agricultural land and as a consequence 

the area of agricultural land differs among the PSUs. 

 
Figure 8.Schemtatic representation of the Soils4Africa sampling design type: three-stage random sampling. The primary 

sampling unit (PSU) is indicated by the black rectangle in the figure on the left. The PSU contains a number of one ha pixels 

that are classified as agricultural land, the secondary sampling units (SSUs). A fixed number of SSUs will be selected in each 

selected PSU. Each SSU is composed of 400 tertiary sampling units (TSUs) that measure 5 x 5 m. In each selected SSU one of 

these TSUs is selected for field sampling. Soil aliquots are taken at four locations within the TSU and bulked into a composite 

sample. 

Sampling units will be selected in each of the three stages of the design. The sampling locations of 

the TSU are fixed and therefore do not need to be selected randomly within the TSU. The method 

for sampling unit selection does not need to be the same for each stage. In other words, each 

stage can have its own design type.  

We have chosen a stratified random sampling approach for selecting the primary sampling units 

(see next section for more information). The probability of selecting a PSU is proportional to its 

size, i.e. area of agricultural land. As the example in Figure 9 shows, the area classified as 

agricultural land differs among the PSUs and varies between 1 and 400 ha (with a median area of 

214 ha). By selecting PSUs with probability proportional to size (pps) we ensure that all SSUs 

that belong to the same stratum have the same inclusion probability. This will simplify the 
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statistical inference. Furthermore, PSUs will be selected without replacement (ppswor), which 

means that each PSU cannot be selected more than once. PSUs are selected with the local pivotal 

method (Grafström et al., 2012), using the geographic coordinates of the centers of the PSUs as 

spreading variables, to improve geographic spreading of the PSUs within strata. We expect that 

this geographic spreading increases the accuracy of the estimates. 

The secondary and tertiary units will be selected with simple random sampling without 

replacement (srswor). Because the PSUs and SSUs are small there is no need for a more 

sophisticated selection method. Also, simple random sampling will keep the statistical inference 

straightforward. 

The full design can thus be described as follows: Three-stage cluster random sampling, with 

stratified ppswor-sampling in first stage, srswor sampling  in the second and third stage. 

In total 5000 PSUs will be selected across the area classified as agricultural land in Africa with a 

maximum of 4 SSUs in each selected PSU, bringing the total sample size to 20,000. Optimization of 

the number of PSUs per stratum, number of SSUs per PSU and number of TSUs per SSU a priori 

was not possible because no suitable data were available to assess the various variance 

components of the design – i.e. the variation within a stratum and within PSUs, SSUs and TSUs – 

that one would need for such optimization. However, with the data being collected within this 

project it will be possible to optimize sample sizes for next sampling rounds. This would require 

though that multiple TSUs are sampled for a small subset of selected SSUs.   

 

Figure 9. Example of clustering of 1ha pixels classified as agricultural land (depicted in yellow) into primary sampling units 

(PSUs). A PSU is represented with a transparent square outlined in black. From this example it is obvious that the number of 

agricultural land pixels can differ greatly between clusters. Some clusters have none, these will not be considered for sampling. 

Some have only a few, while others have many (up to 400). 

Stratification of the primary sampling units 

As explained in Chapter 2, stratification of sampling units can be advantageous. It can make the 

sampling design more efficient and one can control sample sizes in domains of interest (by using 

these domains as strata) and thus ensure that all domains are sampled which is not guaranteed 

with simple random sampling. We have collected a number ancillary data layers (see section on 

‘Ancillary data’ in this chapter), some of which are likely candidates for stratification. These include 

WRB reference soil groups, agro-ecological zones (AEZ), farming systems and land cover classes. 

To increase the efficiency of the design the strata and target soil properties and indicators should 

be associated.  The association of four basic soil properties and four candidate stratification 

variables was studied by fitting one-way ANOVA models, using Africa-wide legacy soil data reported 

by Batjes and Ribeiro (2021). Results in the form of fraction of explained variation are presented in 

Table 1 and show that all variables except land cover are reasonable predictors of at least two of 

the properties tested, with WRB RSGs and farming systems generally outperforming AEZ and land 
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cover. The farming system 2001 version performs somewhat better than the 2019 level 1 version. 

The more detailed 2019 level 2 version, however, outperforms the level 1 layer and all other 

variables tested. 

Table 1. Fraction of explained variation (adjusted R2 values) of one-way ANOVA models for four basic soil properties 

(obtained from the WOSIS database: 26,423 data points, 0-30 cm layer) using one out of four categorical variables 

that are candidates for stratification as a factor: WRB reference soil group, farming system (2001 and 2013 version; 

with 2 classification levels for the latter), land cover and agro-ecological zone. WRB RSG: 20 classes; FS2001: 16 

classes; FS2019lev1: 13 classes, FS2019lev2: 42 classes, Land cover: 5 classes; AEZ: 12 classes. 

 WRB RSG FS2001 FS2019lev1 FS2019lev2 Land cover AEZ 

Clay 0.133 0.084 0.070 0.132 0.017 0.070 

SOC 0.100 0.182 0.137 0.189 0.035 0.204 

CEC-pH7 0.246 0.190 0.166 0.313 0.005 0.020 

pH-H2O 0.204 0.232 0.216 0.309 0.099 0.209 

 

PSUs are selected by stratified random sampling. This implies that the stratification is applied at 

the level of the PSUs so that each PSU belongs to one class of a stratification variable, i.e. can only 

belong to one soil class, one farming system, one land cover class, etc. It may happen that a class 

boundary crosses a PSU. An hypothetical example of such situation is given in Figure 10. In that 

example there are a few PSUs that are partly located in class ‘A’ and partly in ‘B’. For these PSUs 

the dominant (modal) class is determined and that class is then assigned to the PSU. In this case 

the dominant class is not the class that covers the largest surface area in the PSU but the class 

that covers the largest area classified as agricultural land within the PSU. See also Figure 10.  

So for each of the about 4M PSUs in the sampling universe, we determined the dominant class for 

each of the categorical ancillary variables and the mean value (calculated only considering the 

agricultural land pixels) for the each of the continuous ancillary variables (elevation, topographic 

wetness index, length of growing season, accessibility, population density).  

 

Figure 10. Hypothetical example of stratification of primary sampling units. The curvy line represents the boundary between 

strata A and B. Some PSUs fall completely within a single stratum and are assigned to that stratum. Others fall on a stratum 

boundary (e.g. the PSU outlined in bold). The stratum assigned to such PSU is the one that contains the majority of the 

agricultural land pixels. In this case stratum ‘A’ despite that ‘B’ covers a larger surface area. 

We have considered using multiple variables for stratification. A cross-classification approach (see 

Chapter 2, section ‘Stratification’) was not practically feasible because of the prohibitively large 

number of cross-class strata (9,000 when using farming system, soil class and land cover class as 

stratifying variables). We therefore explored and tested the multi-way stratification approach 

(Chapter 2) that allows to control sample sizes in all classes without making use of cross-classes. 

Though we succeeded implementing multi-way stratification within the first stage of the three-

stage sampling design, we finally abandoned this effort because estimation of the sampling 
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variance of estimated means and totals becomes quite complicated, hampering practicability of the 

design.  

Hence the decision was taken to simplify stratification and use only one thematic variable to 

stratify the sampling universe. Given the scope of the project (agricultural intensification), farming 

systems were selected for this purpose since these present a relevant reporting unit and by 

selecting this variable we ensure that we have soil aliquots collected across all major systems. 

Besides, table 1 showed that the farming system layers are adequate predictors of four basic soil 

properties at continental level. We used the update of the 2001 version that was developed and 

described by Van Velthuizen et al. (2013) and Dixon et al. (2019). This dataset has two levels: 13 

major farming systems that are subdivided into 42 sub-systems. Sub-divisions are largely 

controlled by geography. Figure 11 shows the level 1 farming systems across the sampling 

universe. Annex 1 the full classification. The level 2 systems were used for stratification.  

Even though we do not use other thematic variables for stratification, we point out that we can still 

exploit information contained in other relevant variables for estimation (see Chapter 2, section 

‘Sampling of sub-areas and estimation of local quantities’, post-stratification). Besides, it is still 

possible to obtain separate estimates of target quantities for other domains such as soil classes, 

land cover classes, agro-ecological zones, etc. 

 

Figure 11. Map of major farming systems in the sampling universe (Van Velthuizen et al., 2013). 
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Refining the sampling universe 

Disputed territories 

There are several disputed territories in continental Africa. These territories have been excluded 

from the sampling frame. The excluded are Ilemi triangle (Kenya/South Sudan), Halib triangle 

(Egypt/Sudan), Bir Tawil (unclaimed by Egypt/Sudan), Western Sahara (Morocco/Sahrawi Arab 

Democratic Republic). Apart from the Ilemi triangle, the area classified as agricultural land was 

negligible for these areas. 

Elevation 

High-elevation areas were excluded from the sampling frame as well. An elevation threshold of 

3,000 m was used for this purpose. The excluded areas pertain to relatively small areas mainly in 

Ethiopia and Kenya covering about 15,000 km2.  

Fieldwork safety 

Unfortunately, there are extensive regions in Africa where the current safety situation do not 

permit fieldwork such as for instance in the parts of the Sahel, horn of Africa or northeast 

Mozambique. The map in Figure 12 shows areas classified as ‘unsafe’ for fieldwork (see Annex 2 for 

an overview). This information was elicited from project partners and other, more general risk 

assessments3. We point out that this overview might not be yet complete and that the overview 

will be updated once more information about safety becomes available when planning fieldwork. 

The current overview classifies 9.6% of the area classified as agricultural land as ‘unsafe’. 

 
Figure 12. Map indicating unsafe regions in Africa. 

 

 

3 https://www.controlrisks.com/-/media/corporate/files/riskmap-2021/riskmap-2021-map-regions-africa-a3.pdf, 

https://www.controlrisks.com/-/media/corporate/files/riskmap-2021/riskmap-2021-map-regions-mena-a3.pdf 
 

 

https://www.controlrisks.com/-/media/corporate/files/riskmap-2021/riskmap-2021-map-regions-africa-a3.pdf
https://www.controlrisks.com/-/media/corporate/files/riskmap-2021/riskmap-2021-map-regions-mena-a3.pdf


Soils4Africa D3.2B | Soils4Africa Sampling Design 

 

70 
This project has received funding from the 

EU Horizon 2020 Research and Innovation Programme  

under Grant Agreement 862900 

Areas classified as ‘unsafe’ are not excluded from the sampling frame, but the 5000 PSUs were 

selected from safe areas. Besides, additional units were selected from unsafe areas so that these 

could be sampled once the safety situation improves. In this way we ensure that each country has 

at least a complete design.  

Protected areas 

Africa has vast areas of land that have a protected status, with varying types and degrees of 

protection. Protected lands are mapped and described by UNEP-WCMC (2021). The data is 

available in form of three GIS layers. In total, these three layers distinguish 128 unique classes 

(though there is some overlap between these; e.g. ‘Hunting Area’, ‘Hunting Zone’ , ‘Hunting 

Reserve’). About 18.5% of the area classified as ‘agricultural land’ falls within a protected area.  

The 128 protected area classes were standardized into 25 classes depending on type of protected 

area. A ‘sampling class’ was associated to each of these based on protected area type (see Annex 

3). These classes include “no sampling”, “sampling in cultivated land only”, “sampling”. Main areas 

excluded for sampling include National Parks, private nature reserves and ranches and (RAMSAR) 

wetland reserves. Faunal reserves, forest reserves, nature reserves, wildlife reserves and UNESCO 

Biosphere and World Heritage Sites are sampled only in areas that are under cultivation, under the 

assumption that non-cultivated land in these reserves is not or only very extensively used for 

agriculture and therefore of less relevance to this project.  

 
Figure 13. Map of protected areas and classification according to their possibility for soil sampling. 
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The basic ‘sampling’ classification was refined with information on IUCN protected areas categories4 

(which was only available for a very limited set of protected areas). If a protected area was 

classified as a Ia, Ib or II category, then ‘sampling class’ was set to ‘no sampling’, irrespective of 

the type of protected area. Further refinement was introduced based on ownership type. Not all 

privately owned nature reserves were classified as such in the dataset. This was especially true for 

the nature reserves in South Africa. Because such private nature reserves are typically dedicated to 

conservation and tourism and do not have a primary agricultural function, we classified all nature 

reserves for which the government type was ‘individual land owner’ as private reserve and 

assigned sampling class ‘no sampling’ to these. 

Of the 18.5% of agricultural land area that falls within a protected area, 5.4% is directly excluded 

from the sampling frame, in 9.8% we can sample in cultivated areas and in 3.2% we assume we 

can sample. Figure 13 shows the distribution of ‘sample classes’ for the protected areas within the 

sample universe. Implementing this classification results in 13.2% of the area classified as 

agricultural land to be excluded for sampling (Figure 14). Figure 15 shows an example for 

Tanzania. 

 

Figure 14. Map of protected areas within area classified as agricultural land where sampling is not possible. 

 
 

4 https://www.iucn.org/theme/protected-areas/about/protected-area-categories 

https://www.iucn.org/theme/protected-areas/about/protected-area-categories
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Figure 15. Map of protected areas and classification according to their possibility for soil sampling for Tanzania (left) and map of 

protected areas within area classified as agricultural land in Tanzania where sampling is not possible. 

 

Sample sizes and sample selection  

Sample sizes 

The size of the sampling universe after excluding high elevation and protected areas, but including 

the ‘unsafe’ areas is 6.7M km2. The table in Annex 4 lists the area classified as agricultural land per 

country. We note here that 50% of the countries contain 90% of the area classified as agricultural 

land. 

Countries are important domains for which the project wishes to report separate results. 

Furthermore, countries will be important drivers of soil change since sustainable agricultural 

intensification efforts will be determined by national policies. Consequently countries, though not 

directly related to soil conditions, will form a relevant monitoring unit. We therefore wish to control 

sample sizes in each country. Country therefore was used as a second stratification variable, so 

that farming systems within countries were used as strata. Sampling unit selection at country level, 

with sample sizes that can be selected for each country individually, has the additional advantage 

that it adds flexibility to the design (see section ‘Considerations for designing a monitoring scheme’ 

in the next chapter). 

Allocation of sample sizes was done hierarchically: first the total sample sizes per country were 

determined, then the total sample size of a country was allocated to the farming systems within 

that country. PSUs are allocated to the countries proportional to the surface area of agricultural 

land (rounded up). This gives an equal sampling density for all countries. The table in Annex 4 

shows the distribution of PSUs across the countries (and main land cover classes and WRB 

reference soil groups) based on proportional allocation. The table also shows that, as a 

consequence of having a relatively small area of agricultural land, sample sizes are very small for 

some countries or even zero for Djibouti. Such small sample sizes are not realistic and for now we 

assume a minimal sample size of 25 PSUs (100 sampling locations) for each country but this 

number can be adjusted if necessary. For countries with PSU sample size between 26 and 39, the 

sample size will be increased to 40; for countries with sample size between 41 and 49 to 50. To 

stay within the targeted 5,000 PSUs, sample sizes for countries with over 300 PSUs will be reduced 

by 8% and sample size for countries with 200 to 300 PSUs with 4%. Sampling units of countries 

excluded from sampling (e.g. Central African Republic) will be proportionally re-allocated to the 

other countries. Finally, we note that the (proportional to size) sample sizes in Annex 4 are 

indicative and that these are likely to change when operationalizing the design. 
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The sampling frame 

Selection of sampling units requires a sampling frame. A sampling frame is a representation of the 

sampling universe that lists all possible sampling units. Sampling units will be selected from the 

sampling frame. This typically happens in two steps. First, the inclusion probability of each 

sampling unit is calculated. The inclusion probabilities are determined by the design. Second, a 

sampling algorithm is used to select sampling units from the sampling frame, respecting the 

inclusion probabilities of the units. Construction of one sampling frame with all SSUs in the 

sampling universe, with an extra column indicating the PSU of each SSU, was not feasible. 

Therefore we constructed two sampling frames: one containing all PSUs in the sampling universe, 

and one containing all SSUs for the selected PSUs. Besides the sampling units themselves, the 

sampling frame contains all information that is required by the design to select sampling units. 

Annex 5 shows the structure of the sampling frame of the PSUs.  

Sampling unit selection 

PSUs were selected for each country using the samples sizes listed in Annex 4 with a minimum of 

25 samples per country and sample sizes rounded up to 40 and 50 for some countries with 

relatively few PSUs as described before. Prior to allocation to the strata, strata containing less than 

150 PSUs (jointly containing max. 600 km2 of agricultural land) and covering less than 1% of the 

country’s agricultural land area were discarded since these mainly represent polygon slivers 

resulting from an intersection between country and farming system.   

Since we cannot sample in areas classified as ‘unsafe’ we have to take fieldwork safety into account 

when selecting sample locations. We therefore cross-classified the farming system strata with a 

safety indicator (2 classes; Figure 12). In order to reach the minimum requirement of 20,000 

sampling locations, the pre-determined PSU sample size was allocated to the area classified as 

‘safe’ and distributed across the farming system strata within this area proportional to stratum size 

(see previous section) with a minimum of three PSUs per stratum. As a consequence, the country 

sample sizes are not exactly proportional anymore to the agricultural land area, but this does not 

impair the requirement of unbiased and valid estimation of target quantities. The sample of 20,000 

units was supplemented with a sample for the areas classified as ‘unsafe’. The sample size for this 

area was chosen in such a way that the sampling density equals the sample density in the ‘safe’ 

area. Thus giving a uniform sample distribution across the entire, safe and unsafe, agricultural land 

area in a country. Figure 16 shows the distribution of about 5200 selected PSUs across Africa’s 

agricultural land in areas judged as ‘safe’. The total number is somewhat higher than the targeted 

5000 because of minimum sample size requirements for countries and strata. In addition, about 

800 additional PSUs are selected in area that are judged ‘unsafe’ to sample. Note that this selection 

is tentative and small changes can still be expected when planning fieldwork. 

Processing of the sampling frame and sample selection was done with the statistical software R (R 

Core Team, 2020) making it fully reproducible and easily updateable. Selection of sampling units 

was done with the statistical software R using packages BalancedSampling (Grafström and Lisic, 

2018) and sampling (Tillé and Matei, 2021). All code is stored in the GitLab repository of 

Wageningen University and Research5. 

 

An illustrative example for Kenya 

In this section we give an example of the selection of PSUs for Kenya. Figure 17 shows the 

approximately 71,700 PSUs for Kenya and Figure 18 the farming system strata. Figure 19 depicts 

 
 

5 https://www.wur.nl/en/Value-Creation-Cooperation/Collaborating-with-WUR-1/Manage-your-source-code-with-GitWUR.htm 

https://www.wur.nl/en/Value-Creation-Cooperation/Collaborating-with-WUR-1/Manage-your-source-code-with-GitWUR.htm
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the fieldwork safety classification and Figure 20 the farming systems x safety cross-strata. The PSU 

sample size for Kenya is 108. Area classified as ‘unsafe’ coves 14.7% of the total agricultural land 

area. The 108 PSU are allocated to area classified as ‘safe’. This means that we need to select an 

additional 19 units for the area classified as ‘unsafe’ to have the same sampling density in this area 

bringing the total sample size to 127. These are subsequently allocated to the farming systems x 

safety cross-strata proportional to strata sizes, with a minimum of three and rounded upwards. 

Next, a spatially balanced sample is selected within each stratum with the local pivotal method. 

Actual number of selected sampling locations is 130 because of the minimum requirement and 

rounding upwards. Figure 21 shows the distribution of the selected PSUs across the farming system 

strata. The points in red are the sampling locations in ‘unsafe’ areas. 

 

 
Figure 16. Locations of the selected primary sampling units. 
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Figure 17. Map of primary sampling units (PSUs)  in Kenya that the number of 1ha agricultural land pixels per PSU. 

 

Figure 18. Major farming systems in Kenya following Van Velthuizen et al. (2013). 
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Figure 19. Safety classification. Areas judged unsafe to sample are indicated in red. 

 

Figure 20. Cross-classification of farming systems and sampling safety classes. The ‘0’ addition in the class name indicates 

‘unsafe’, ‘1’ indicates ‘safe’. 
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Figure 21. Selected primary sampling units for Kenya (n = 130). Locations indicated in red (n = 22) are in unsafe areas and will 

not be visited during the project. 

 

Design decisions and trade-offs 

Each sampling design type has advantages and disadvantages. Choosing a design type always 

involves trade-offs, typically between sample sizes that can be afforded for a given cost, accuracy 

of the estimators and operational efficiency. For the Soils4Africa sampling design we have chosen 

for a (stratified) three-stage cluster random sampling design type so that spatial clusters of 5 m x 

5 m sampling plots are selected, each cluster consisting of four plots. Such design provides clear 

operational advantages; more sampling units can be observed in a given survey time since less 

travel time is required (De Gruijter et al., 2006; Brus, in prep). Given the scope of the Soils4Africa 

project, where 20,000 soil aliquots need to be collected within a 8M km2 area with sometimes poor 

infrastructure and limited accessibility of the terrain, we expect the operational advantages to be 

huge as compared to other sampling designs spreading out the sampling plots throughout the 8M 

km2 study area. Instead of visiting 20,000 individual locations, 5000 clusters of sampling sites are 

visited which reduces travel time by some 75%. Given the relatively limited time for the sampling 

campaign, this reduces some of the risks associated to a project of this scope.  

In multi-stage random sampling there is a trade-off between operational efficiency and accuracy of 

the estimates (De Gruijter et al., 2006; Brus, in prep.). Given a fixed number of 5 m x 5m 

sampling plots, estimates obtained from a stratified three-stage cluster random sample are less 

accurate than those obtained from a stratified simple random sample. This also means that for a 
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fixed sample size, the minimum detectable change in soil conditions is larger. Or the other way 

around, to be able to detect a given change at a given significance level and with a given statistical 

power, a larger samples size is needed for stratified three-stage cluster random sampling than for 

stratified simple random sampling. 

It is possible to optimize the sample sizes of the different sampling units of a multi-stage sample 

design given a maximum budget or minimum precision (maximum variance of estimated mean) 

(Brus, in prep). This requires a cost model and a priori estimates of the variance components of the 

design (Domburg et al., 1997). In the case of a stratified three-stage cluster random sampling 

design these  variance components are: 

1. The variance of the true PSU means (2 x 2 km clusters) within the strata 

2. The variance of the true SSU means within the PSUs (100 x 100 m pixels) 

3. The variance of the true TSU means within the SSUs (5 x 5 m sampling plots) 

4. The variance at points within a TSU (which we can possibly assume to be negligible 

compared to the other variance components). 

As soon as data of the first sampling round are available, these variance components can be 

estimated as well as the parameters of a costs model. These estimates can then be used to 

optimize the number of PSUs per stratum, number of SSUs per PSU, number of TSU’s per SSU and 

number of points per TSU. The  estimated variance components (for a set of relevant soil 

properties and soil quality indicators) can then also be used to calculate minimum detectable 

change  for a given sample size and the calculation of sample sizes required for a given minimum 

detectable change. At this stage though, a priori information about the variance components 

cannot be derived from available (soil point) data sources. A cost model is not available either. It is 

therefore not possible to optimize the sample sizes, nor to give an indication of likely minimum 

detectable changes a priori. Once soil sampling has started, however, such information about the 

variance components and costs will become available. The Soils4Africa soil dataset will therefore be 

a great asset that will allow sample size optimization for the current design and sampling efficiency 

comparisons between alternative designs. To compute the required total sample size for a given 

minimum detectable change also information is needed of the temporal variation. If sampling 

location are revisited, an estimate of the temporal correlation of two observations at the same 

point but at different times is needed.   

In Chapter 1 we mentioned that a secondary purpose of the project is to develop gridded soil maps 

of key soil properties and soil quality indicators. Though probability sampling designs are not 

always optimal for this purpose, this does not mean that the data collected by the project cannot 

be used for mapping. Though possibly not optimal for a mapping purpose, the data can still be very 

well used for mapping, and can even be supplemented with soil point data from other sources to 

improve the digital soil mapping models. Use of the data for mapping was anticipated with 

implementation of the local pivotal method that optimizes geographic spreading of the selected 

samples. 
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5. Sampling for monitoring6 
Monitoring soil conditions over time is not an aim of the Soils4Africa project. Nevertheless, the 

sampling design and collected data should provide a statistically sound basis from which future 

monitoring of soil across the African continent or parts there of (e.g. in countries) is possible. The 

final chapter in this report is therefore dedicated to an overview of sampling approaches for 

monitoring. 

One of the main purposes of monitoring is to estimate the change of a (soil) variable between two 

sampling times (cycles). For instance, we may be interested in the change in the mean soil organic 

carbon concentration in the topsoil of a country, or the change in areal fraction of degraded soil in 

a landscape after intervention measures have been put in place. If one has more than two 

sampling times, then the interest might be in the average change per time unit of the mean, total 

or fraction, i.e., the temporal trend. There are several (global) space-time quantities that can be 

estimated (De Gruijter et al., 2006) of which the following are the most relevant in the context of 

the Soils4Africa project:  

• the current mean (i.e., the spatial mean at the most recent sampling time); 

• the change of the spatial mean from one sampling time to the other; 

• the temporal trend of the spatial mean. 

In this report we only consider sampling approaches for monitoring global quantities or local 

quantities in large sub-areas of the sampling universe. We thus limit ourselves to the estimation of 

quantities such as means, totals, areal fractions that we believe are most relevant for Soils4Africa. 

Methods for local (i.e., location-specific) prediction in space-time are not considered here. These 

methods pertain to spatio-temporal mapping, i.e., mapping a target (soil) variable over the entire 

space-time universe and updating maps. We refer the reader to De Gruijter et al. (2006) who 

provide an elaborate overview of (model-based) methods for spatio-temporal mapping such as 

space-time kriging and Kalman filtering, while more recently Heuvelink et al. (2020) used machine 

learning for space-time soil organic carbon mapping.  

 

Statistical sampling approaches 

In designing a sample for monitoring, not only spatial variation is relevant, but temporal variation 

must be taken into account as well. This means that sampling times must be selected in addition to 

sampling locations, leading to four possible sampling approaches, i.e., combinations of probability 

(P) and non‐probability sampling (NP) (Brus, 2014): 

• P‐sampling in both space and time (P + P),  

• NP‐sampling in both space and time (NP + NP),  

• P‐sampling in space and NP‐sampling in time (P + NP), and 

• NP‐sampling in space and P‐sampling in time (NP + P). 

With P + P the space-time mean (total, fraction) can be estimated with a fully design-based 

method (Brus, 2014). This means that a model of variation in space and time is not needed for 

statistical inference that is fully based on the spatial and temporal sampling designs (Brus and De 

Gruijter, 2012). The P + P approach is advantageous in compliance monitoring of the space-time 

mean or space-time total (Brus and De Gruijter, 2012), such as for instance the total annual CO2 

emission in a country or the change in total SOC stock in a region. The fully design-based approach 

 
 

6 This text was originally written by the lead author of this report as contribution to Teuling et al. (2021) for the EJP SOIL project. The text is 
re-used here in slightly adapted form. 

https://ejpsoil.eu/
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avoids using models (and hence model assumptions) which enhances the validity of the result, 

which is important for compliance monitoring. 

In the NP + NP approach a stochastic (statistical) model of the variation in space and time must be 

postulated to estimate the parameter of interest (Brus, 2014). This means that the statistical 

inference is fully model-based. De Gruijter et al. (2006) explain that fully design-based methods 

are generally well suited for estimating space-time means, but that in some cases using fully 

model-based methods could be advantageous. For instance, this might be the case in a situation 

where one has prior monitoring data from a purposive (non-probability) sample in space-time that 

needs to be extended with additional data. Since NP + NP requires models of variation in space-

time, these methods are more sophisticated than methods for a fully design-based approach, and 

require a solid understanding of geostatistics. De Gruijter et al. (2006, Section 15.3) provide an 

extensive overview of geostatistical methods for a fully model-based sampling approach. 

The P + NP approach uses a hybrid estimator. In this hybrid approach sampling locations are 

selected by probability sampling, whereas sampling times are not. Brus and De Gruijter (2012) 

provide a theoretical overview of the P + NP approach with a focus on the estimation of the 

temporal trend of the spatial mean that they illustrate with a case study on forest soil 

eutrophication and acidification. For this case study sampling locations were selected with 

probability sampling, sampling times were selected preferentially and a model of the temporal 

variation of the spatial means was postulated (a time series model). Brus and De Gruijter (2012) 

show how to do the inference of the P + NP approach with sampling repeated at constant time 

intervals. According to Brus (2014), the NP + P approach with non-probability sampling in space 

and probability sampling in time is rarely used in practice and is therefore not considered here. 

For Soils4Africa the P + NP is the most relevant approach to consider. Sampling locations are 

selected by probability sampling. Probability sampling in time as done in the P + P approach is 

impractical. 

 

Types of sampling pattern 

The efficiency of the monitoring design is both determined by the distribution of the sampling 

events (combination of location and time) in the space-time universe. Monitoring methods are 

designed to minimize the estimation error due to variation in space and in time and the costs of 

sampling. Given any of the probability sampling design types, two different kinds of temporal 

restrictions can be imposed to these designs to increase the efficiency for monitoring purposes. 

Either sampling locations are visited multiple times (stationarity), or multiple sampling locations 

are visited simultaneously (synchronicity). By imposing these restrictions in different combinations, 

four different sampling patterns arise.  

Static sampling revolves around the principle of static sampling locations. This means that 

sampling takes place at a fixed set of locations that are revisited (Figure 22.a). Sampling at the 

various locations may or may not follow the same pattern in time (De Gruijter et al., 2006).  

Synchronous sampling, also known as repeated or dynamic sampling, revolve around the 

principle that a different set of sampling locations is selected for each sampling time (De Gruijter et 

al., 2006) (Figure 22.b). Note that synchronous sampling is sometimes referred to as independent 

synchronous sampling (e.g. Brus, 2014). 

Combining a spatial sampling design and a temporal sampling design results in a static-

synchronous sampling design (Figure 23.a). At every selected sampling moment in time, all 

sampling locations are visited. Such a design is also referred to as a pure panel.  
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The fourth option is rotational sampling (Figure 23.b), which is meant as a compromise between 

the rigid, unbalanced static design and the relatively inefficient synchronous design. The rotational 

design differs from the static-synchronous design in that the locations of the previous sampling 

time are partially replaced by new ones (De Gruijter et al., 2006). This is referred to as ‘sampling 

with partial replacement’. In the rotational panel of Figure 23.b every sampling time one-third of 

the sampling locations of the previous sampling time is replaced by new locations so that the 

overlap of successive sampling times is two-third.  

 

Figure 22. Schematic visualization of a static design with simple random sampling in both space and time (a) and a 

synchronous design with simple random sampling in both space and time (b). (Reproduced from De Gruijter et al., 2006). 

 

Figure 23. Schematic visualization of a static-synchronous design with simple random sampling in both space and time (a) and 

a rotational design with simple random sampling in both space and time (b). (Reproduced from De Gruijter et al., 2006). 

In addition to these four basic sampling pattern types, two variations on these designs are worth 

mentioning there. The first is the serially alternating design (Brus and De Gruijter, 2011; Brus 

and De Gruijter, 2013). In serially alternated sampling, disjoint (i.e., non-overlapping) sets of 

sampling locations are selected and then observed in turn in a cyclic fashion (Brus and De Gruijter, 

2011). The second is the supplemented panel design. This design is a compromise between a 

synchronous and static synchronous design. One set of locations (the ‘pure panel’ part) is 

maintained through time, supplemented with a different set of locations each time (Brus and De 

Gruijter, 2011; Brus and De Gruijter, 2013). Figure 24 provides notional examples of five space-

time sampling designs that show how the different panels (sets of sampling locations sampled at 

the same set of moments) are used in each design.  

 

Sampling strategies 

Once the space-time sampling pattern has been chosen, one must choose a strategy for selecting 

the sampling locations as well as the sampling times. As we have seen previously, probability 

sampling as well as non-probability sampling can be used for this purpose. For monitoring, 

selecting sampling locations is preferably done with probability sampling. Probability sampling in 

time is less common than in space (De Gruijter et al. 2006). Typically, sampling times are chosen 
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purposively. This results in a hybrid P + NP sampling approach. With this approach the change of 

the mean between two sampling times can be estimated by full design-based inference. The 

average change per time unit of the spatial mean (total), i.e. the temporal trend of the spatial 

mean (total) can be estimated either by a hybrid estimator (Brus and De Gruijter, 2013), or fully 

design-based (Brus and De Gruijter, 2011),. In the latter  case the target universe is restricted to 

the sampling times only; what happens between the sampling times is disregarded. 

 

Figure 24. Notional examples of five space-time designs. Static synchronous (top left), (independent) synchronous (top right), 

serially alternating (middle left), supplemented panel (middle right), rotational (bottom) (Reproduced from Brus and De 

Gruijter, 2011). 

The simplest and most common method of sampling in time is systematic sampling; this means 

sampling at constant time-intervals (De Gruijter et al., 2006). Systematic sampling requires to 

choose an appropriate sampling frequency. Sampling at constant time intervals has operational 

advantages and the methods used to analyze are mathematically relatively simple (De Gruijter et 

al., 2006). However, De Gruijter et al. (2006) warn that systematic sampling in time is not always 
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the best option. For instance, if temporal variation varies with time then it is more efficient to 

sample more densely in periods with larger variation, i.e., one might then want to stratify over 

time. Another problem might be if there is periodicity in time and sampling frequency coincides 

with the period. For instance, to estimate the monthly average of the topsoil temperature it would 

be unwise to measure once a day, always at the same time. 

 

Considerations for designing a monitoring scheme 

Flexibility of the scheme 

De Gruijter et al. (2006) stress an important difference between sampling for estimating global and 

local quantities and mapping on the one hand and sampling for monitoring on the other hand. The 

former typically takes place in a relatively short period of time during which the universe of interest 

as well as the operational and budgetary aspects do not change. With monitoring not only the 

universe may undergo (large, unexpected) changes but also the sampling conditions, especially in 

long-term monitoring. This makes that adaptation of a (long-term) monitoring scheme are 

inevitable or at least desirable. Budgets may vary from year to year and operational constraints 

that were initially present might disappear or vice versa. Other changes that might occur over time 

and affect the monitoring scheme are the definition of new objectives (e.g. target variables, 

domains of interest) or the availability of new measurement techniques. Finally, more and more 

data become available about the universe of interest that can give good reason to fine-tune or 

redesign the scheme (De Gruijter et al. 2006). To be able to adapt to (unforeseen) changes in 

conditions calls for flexibility of the monitoring scheme. 

Overton and Stehman (1995) discuss design implications and how the choice of a design is 

influenced by intended users of the data, whereas Overton and Stehman (1996) elaborately discuss 

desirable design characteristics for long-term monitoring of ecological variables and ways to adapt 

the design to changing conditions, including sample restructuring, changing the size of a sample 

(increase or reduce) and post-stratification. These authors stress the importance of keeping a 

design as simple as possible. Overton and Stehman (1995) note that complex sampling designs 

require complex computational formula for statistical inference. By keeping a design simple, 

standard statistical analyses commonly used by environmental scientists are correct or at least 

adequate. Furthermore, they note that the primary concern when designing a monitoring scheme 

should be to develop an adequate design that makes good use of the available resources and not 

to construct the perfect, optimal design. Practical convenience and simplicity cannot be sacrificed 

to achieve optimal statistical efficiency (Overton and Stehman, 1995). 

It is a misconception that for monitoring global quantities (means, totals, fractions) in space-time 

one should always return to the same sampling location during each sampling cycle. For estimating 

the change of the mean, total or areal fraction from one sampling time to another revisiting all 

sampling locations is the best option. However, as will be explained hereafter, for other space-time 

quantities it can be more efficient to revisit a subset of the sampling locations only. As we have 

seen in the previous sections and Figure 24, different sets of sampling locations can be used in 

different sampling rounds such as in the synchronous design, in which every time all locations are 

replaced by new locations, or as in the supplemented panel or rotational design in which locations 

are partially replaced by new locations. The fact that one could select new sampling locations for 

each sampling cycle gives flexibility to the scheme. Moreover we will not always be able to go back 

to the exact location, for instance when the site is used for construction or when access permission 

by the land owner is denied. However, if one does revisit (a selection of) sampling sites in 

subsequent sampling rounds, as will be the case in most sampling designs, see Figure 24, and a 

site cannot be accessed or sampled anymore, then this does not mean the statistical integrity of 
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the monitoring scheme is compromised. Statistical inference still can yield valid and unbiased 

estimates of global quantities.  

Besides ‘ad-hoc’ changes in sample size as a result of accessibility issues, a more structural 

reduction in sample size can be required, for instance after a budget cut. Reducing the number of 

sampling locations to be revisited is straightforward when the existing sample is selected with 

probability sampling. One can simply take a probability subsample of the original sample since a 

probability subsample from a probability sample is itself a probability sample of the sampling 

universe (Overton and Stehman, 1996). Design-based unbiased and valid estimators are still 

available, but it is evident that these estimators  are less precise (have larger variance). Like 

reduction, increasing the size of a probability sample is in most cases straightforward (Overton and 

Stehman, 1996). 

When designing a scheme for long-term monitoring one must thus anticipate that adaptions will be 

required over time. Some smart design choices at the beginning can increase the robustness of a 

design and greatly ease adaptions later on. For instance, choosing a design type that allows 

straightforward adjustment of sample size is of utmost importance. Changing sample size for a 

systematic random sample is less straightforward than that of a simple, stratified or two-stage 

cluster random sample (Overton and Stehman, 1996). Another simple measure one can take in 

case of a stratified design is to ensure that a large enough number of sampling locations is selected 

from each stratum so that a possible reduction of sampling size in the future is less likely to 

compromise the sample structure. The minimum sample size for a stratum is two (to be able to 

estimate the stratum variance). By choosing a sample size per stratum large enough at the 

beginning, one can ensure that after a (substantial) budget cut at least two (permanent) sample 

sites remain in each stratum. When designing a sampling scheme this could imply that fewer strata 

must be defined than initially intended, leading to larger stratum sample sizes that can be reduced 

when the budget is reduced. Fewer, larger strata may yield less precise results at the original 

budget but the expected loss of initial precision may be less important than greater adaptability to 

changing budgets (De Gruijter et al., 2006). 

While designing the Soils4Africa sampling scheme, we have attempted to keep the design as simple 

as possible given the boundary conditions. We have used one thematic stratification variable 

(farming systems) with a limited number of classes (per country). Statistically valid and unbiased 

estimates of target parameters can be obtained at the country level that can subsequently be 

pooled in a combined estimator for the continent. This means that the design can be adjusted at 

country level without affecting the design and estimation in other countries. Adjustments can 

include sample sizes – total sample size, strata sample sizes of the PUs and the number of selected 

SUs per PU – without consequences for the statistical inference. But also the stratification can be 

refined. If a country can permit a larger sampling size in a next sampling round, then a more 

refined stratification variable that might be better suited to a country’s condition and reporting 

needs can replace the stratification variable used here. Compatibility with the proposed Soils4Africa 

design is not compromised as long as the inclusion probabilities of each of the newly selected 

sampling locations in the adapted scheme are known. This will also allow combining the data 

collected with different probability sampling designs (see for instance Grafström et al., 2019). 

Operational aspects 

Here we consider some statistical and operational aspects of choosing a space-time design for 

monitoring as summarized from De Gruijter et al. (2006): 

• Static and static-synchronous patterns are attractive when the costs of repeated sampling 

at the same location are lower than for sampling at different locations with the same total 

sample size. This is for instance when semi-permanent measuring equipment is installed at 

fixed locations. A statistical disadvantage of these two patterns is that only information on 
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temporal variation increases and not that on spatial variation, in contrast to synchronous 

and rotational patterns (incl. serially alternating and supplemental panel). An advantage of 

static over static-synchronous is that sampling times may be adapted to local 

circumstances (e.g. sampling at a time when operational costs are lowest), while static-

synchronous patterns reduce the number of sampling times given the sample size 

compared to static patterns. This means that if costs for an additional sampling time are 

larger than for sampling additional locations at a given sample time, it can be attractive to 

reduce the number of sampling times and increase the number of sampling locations per 

sampling time. This enables more locations to be sampled in total, yielding more accurate 

estimates of spatio-temporal global quantities. A static pattern is attractive when 

considerable spatial variation between time series is known to exist. The French soil 

monitoring network is an example of a static-synchronous pattern. 

• Synchronous patterns are much more flexible than static and static-synchronous patterns. 

With each sampling time one is free to choose a spatial or change the existing design (e.g. 

sample size, possible stratification, clustering) to adapt to the circumstances at the 

sampling time. Statistical inference from a synchronous sample is much simpler compared 

to static, static-synchronous and rotational samples since no sampling locations from 

earlier sampling times are revisited. 

• Rotational patterns are more flexible and have better spatial coverage than static and 

static-synchronous patterns. If there is a fair amount of correlations between observations 

at consecutive sampling times, then rotational patterns are more efficient in estimating 

current means, totals and fractions as well as temporal trends than synchronous patterns. 

A disadvantage of rotational patterns is that design-based inference of the sampling 

variance is somewhat more complicated. 

• Supplemented panel designs have the same advantages as a rotational design. Besides 

supplemented panel has the advantage of operational simplicity: a subset of locations is 

fixed (the pure panel subset), whereas others are swarming. Besides, at the fixed locations 

a time series of data is obtained. 

Suitability of sampling patterns for monitoring 

Finally, we briefly consider suitability of the four main sampling patterns for estimating global 

quantities (see bulleted list in the introduction paragraph of Section 4.2.3). We limit ourselves here 

to the ‘current global quantities’ and ‘change of the spatial mean’, and the ‘temporal trend of the 

spatial mean’. The following summary is adapted from De Gruijter et al. (2006):  

• Estimation of the current means, totals, fractions: rotational or supplemented panel 

designs are preferred over synchronous or static-synchronous designs. Because sampling 

locations partially overlap in these designs, these designs can exploit information from 

previous sampling times. Synchronous designs do not have such overlap and there is no 

simple way to use information from a previous sample to estimate a current quantity. 

Static-synchronous designs have fully overlapping sample locations (use one panel only) so 

there is no additional information from in the measurements taken in a previous sampling 

round. 

• Estimation of the change of means, totals and fractions: Static-synchronous designs are 

more efficient than synchronous designs (though the latter are suitable for this purpose as 

well) because one profits most from the correlation of the two sample sets measured at the 

two times. 

• Temporal trend of the spatial mean. With more than two sampling times, a supplemented 

panel design can be more efficient to estimate the average change of a global quantity per 

time unit than a static-synchronous design. This depends on how persistent the spatial 

patterns of the soil variables of interest are (Brus and de Gruijter, 2013). When the spatial 

patterns do not change much over time (strong persistence) a supplemented panel design 
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yields relative precise estimates of a linear time trend of the population mean, whereas for 

highly dynamic variables resulting in large changes in the spatial pattern over time (e.g., 

locations with high values at a given time may well have small values at a subsequent 

time) a synchronous or serially alternating design is the best choice. For moderate 

persistence the choice is more complicated; supplemented panel or serially alternating 

designs are good choices in this case (Brus and De Gruijter, 2013). 
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ANNEX 

Annex 1: Farming system classes  

Following the updated classification of Van Velthuizen et al., (2013), Dixon et al. (2019). 

Level 1 L1 description Level2 L2 description 

1 Maize mixed 11 Ethiopian maize-livestock 

1 Maize mixed 12 Kenyan-Ugandan hoe-tractor maize mixed 

1 Maize mixed 13 Tanzanian semi-mechanized maize mixed 

1 Maize mixed 14 Malawian market-linked maize mixed 

1 Maize mixed 15 Central African scattered maize-root crop 

1 Maize mixed 16 Mozambiquan extensive maize mixed 

1 Maize mixed 17 Southern African dualistic maize mixed 

1 Maize mixed 18 Zambian medium population density maize mixed 

1 Maize mixed 19 Madagascan maize-rice 

2 Agropastoral 21 Sahelian agropastoral 

2 Agropastoral 22 East African agropastoral 

2 Agropastoral 23 Southern African agropastoral 

2 Agropastoral 24 North African dryland mixed 

3 Highland perennial 31 Southern Ethiopian highland perennial 

3 Highland perennial 32 Albertine Rift highland perennial 

3 Highland perennial 33 Northern Tanzanian highland perennial 

3 Highland perennial 34 Southern Tanzanian highland perennial 

3 Highland perennial 35 Central Kenyan highland perennial 

3 Highland perennial 36 Western Kenyan highland perennial 

4 Root and tuber crop 41 Yam-cassava 

4 Root and tuber crop 42 Cassava-yam-cocoyam 

4 Root and tuber crop 43 Cassava-cocoyam 

4 Root and tuber crop 44 Cassava-sweet potato-potato 

4 Root and tuber crop 45 Cassava 

5 Cereal-root crop mixed 51 Cereal-pulse-root crop 

5 Cereal-root crop mixed 52 Root crop-cereal 

6 Highland mixed 61 Highland livestock-cereal 

6 Highland mixed 62 Highland wheat-pulse 

6 Highland mixed 63 Highland maize-teff 

6 Highland mixed 64 North African highland mixed 

7 Humid lowland tree crop 70 Humid lowland tree crop 

8 Pastoral 81 Sahelian pastoral 

8 Pastoral 82 East African pastoral 

8 Pastoral 83 Southern African pastoral 

8 Pastoral 84 North African pastoral 

9 Fish-based 90 Fish-based 

10 Forest-based 100 Forest-based 

11 Large-scale irrigated 110 Large-scale irrigated 

12 Perennial mixed 121 Grape and deciduous fruit perennial mixed 

12 Perennial mixed 122 Sugarcane and production forest perennial mixed 

12 Perennial mixed 123 Rainfed perennial mixed 

13 Arid pastoral oasis 130 Arid pastoral oasis 
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Annex 2: Areas classified as ‘unsafe’ for soil sampling  

 

Country Region 
 

Country Region 

Algeria Adrar  Mozambique Cabo Delgado 

Algeria Bechar  Niger Agadez 

Algeria Ghardaia  Niger Diffa 

Algeria Illizi  Niger Niamey 

Algeria Ouargla  Niger Tahoua 

Algeria Tamanrasset  Niger Tillaberi 

Algeria Tindouf  Nigeria Borno 

Burkina Faso Yatenga 
 

Nigeria Yobe 

Burkina Faso Lorum 
 

Nigeria Adamawa 

Burkina Faso Bam 
 

Somalia Galgaduud 

Burkina Faso Sanematenga 
 

Somalia Hiraan 

Burkina Faso Soum 
 

Somalia Bakool 

Burkina Faso Seno 
 

Somalia Gedo 

Burkina Faso Oudalan 
 

Somalia Bay 

Burkina Faso Yagha 
 

Somalia Shabelle Dhexe 

Burkina Faso Tapoa 
 

Somalia Shabelle Hoose 

Burkina Faso Kompienga 
 

Somalia Banadir 

Burkina Faso Komondjari 
 

Somalia Juba Dhexe 

Cameroon Extreme-Nord 
 

Somalia Juba Hoose 

Central African Republic   South Sudan Warab 

Chad Tibesti  South Sudan El Buheyrat 

Chad Borkou  Sudan Northern Darfur 

Chad Ennedi  Sudan Western Darfur 

Chad Lac  Sudan Southern Darfur 

Chad Hadjer Lamis  Uganda Kaabong 

DR Congo Ituri  Uganda Lamwo 

DR Congo Equateur  Uganda Yumbe 

DR Congo Tshuapa  Uganda Moyo 

DR Congo Nord-Kivu  Uganda Kitgum 

DR Congo Sud-Kivu  Uganda Koboko 

DR Congo Sankuru  Uganda Adjumani 

DR Congo Kasai-Central  Uganda Amuru 

Ethiopia Tigray  Uganda Maracha 

Kenya Mandera  Uganda Arua 

Kenya Wajir  Uganda Kotido 

Kenya West Pokot  Uganda Abim 

Kenya Samburu  Uganda Moroto 

Kenya Isiolo  Uganda Zombo 

Kenya Baringo  Uganda Napak 

Kenya Elgeyo-Marakwet  Uganda Nakapiripirit 

Kenya Garissa  Uganda Buliisa 

Kenya Lamu  Uganda Amudat 

Mali Kidal  Uganda Ntoroko 

Mali Gao  Uganda Bundibugyo 

Mali Tombouctou  Uganda Kanungu 

Mali Mopti  Uganda Kisoro 

Mauritania Hodh Ech Chargi    

 



Soils4Africa D3.2B | Soils4Africa Sampling Design 

 

94 
This project has received funding from the 

EU Horizon 2020 Research and Innovation Programme  

under Grant Agreement 862900 

Annex 3: Protected area classification  

 

Type of protected area Sampling 

Ancient Monument No 

Area of Outstanding Natural Beauty Yes 

Biological Reserve No 

Bird Reserve No 

Botanical Reserve No 

Conservation Area Yes 

Ecological Park Yes 

Faunal Reserve Cultivated land only 

Fishery Reserve No (outside sampling universe) 

Forest Plantation Yes 

Forest Reserve Cultivated land only 

Geological Protected Area No 

Hunting Area Yes 

Marine Reserve No 

Mountain Catchment Area Yes 

National Park No 

Nature Reserve Cultivated land only 

Other Protected Area No 

Private Nature Reserve No 

Private Ranch No 

Protected Areas of Mediterranean Yes 

UNESCO-MAB Biosphere Reserve Cultivated land only 

Wetland Reserve Cultivated land only 

Wildlife Reserve Cultivated land only 

World Heritage Site (natural or mixed) Cultivated land only 
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Annex 4: Area of agricultural land and number of PSUs based on 

proportional allocation per country, land cover class and soil class 

country area 
(km2) 

area 
(%) 

psu 
 

country area 
(km2) 

area 
(%) 

psu 

Algeria 114,829 1.7 84 
 

Nigeria 563,879 8.3 414 

Angola 520,923 7.6 382 
 

Angola 520,923 7.6 382 

Benin 75,228 1.1 56 
 

DR Congo 495,072 7.3 363 

Botswana 62,118 0.9 46 
 

Ethiopia 443,500 6.5 325 

Burkina Faso 128,934 1.9 95 
 

Tanzania 442,520 6.5 325 

Burundi 20,909 0.3 16 
 

Mozambique 429,522 6.3 315 

Cameroon 138,109 2.0 102 
 

Zambia 320,398 4.7 235 

Central African 
Republic 

207,880 3.1 153 
 

South Sudan 300,566 4.4 221 

Chad 127,607 1.9 94 
 

Madagascar 241,778 3.6 178 

Congo 40,174 0.6 30 
 

Sudan 228,150 3.4 168 

Cote d'Ivoire 179,978 2.6 132 
 

Zimbabwe 213,766 3.1 157 

DR Congo 495,072 7.3 363 
 

Central African 

Republic 

207,880 3.1 153 

Djibouti 50 0.0 0 
 

South Africa 180,904 2.7 133 

Egypt 42,488 0.6 31 
 

Cote d'Ivoire 179,978 2.6 132 

Equatorial Guinea 536 0.0 1 
 

Mali 149,076 2.2 110 

Eritrea 11,054 0.2 8 
 

Kenya 142,361 2.1 105 

Eswatini 10,653 0.2 8 
 

Cameroon 138,109 2.0 102 

Ethiopia 443,500 6.5 325 
 

Guinea 136,072 2.0 100 

Gabon 10,518 0.2 8 
 

Ghana 131,636 1.9 97 

Gambia 6,237 0.1 5 
 

Burkina Faso 128,934 1.9 95 

Ghana 131,636 1.9 97 
 

Chad 127,607 1.9 94 

Guinea 136,072 2.0 100 
 

Uganda 121,533 1.8 89 

Guinea-Bissau 16,756 0.3 13 
 

Algeria 114,829 1.7 84 

Kenya 142,361 2.1 105 
 

Morocco 105,232 1.5 77 

Lesotho 2,913 0.0 2 
 

Niger 88,122 1.3 65 

Liberia 8,829 0.1 7 
 

Benin 75,228 1.1 56 

Libya 25,629 0.4 19 
 

Senegal 65,644 1.0 48 

Madagascar 241,778 3.6 178 
 

Botswana 62,118 0.9 46 

Malawi 56,408 0.8 42 
 

Malawi 56,408 0.8 42 

Mali 149,076 2.2 110 
 

Namibia 44,363 0.7 33 

Mauritania 3,745 0.1 3 
 

Egypt 42,488 0.6 31 

Morocco 105,232 1.5 77 
 

Congo 40,174 0.6 30 

Mozambique 429,522 6.3 315 
 

Sierra Leone 38,918 0.6 29 

Namibia 44,363 0.7 33 
 

Togo 38,620 0.6 29 

Niger 88,122 1.3 65 
 

Tunisia 36,597 0.5 27 

Nigeria 563,879 8.3 414 
 

Somalia 29,368 0.4 22 

Rwanda 19,168 0.3 15 
 

Libya 25,629 0.4 19 

Senegal 65,644 1.0 48 
 

Burundi 20,909 0.3 16 

Sierra Leone 38,918 0.6 29 
 

Rwanda 19,168 0.3 15 

Somalia 29,368 0.4 22 
 

Guinea-Bissau 16,756 0.3 13 

South Africa 180,904 2.7 133 
 

Eritrea 11,054 0.2 8 

South Sudan 300,566 4.4 221 
 

Eswatini 10,653 0.2 8 

Sudan 228,150 3.4 168 
 

Gabon 10,518 0.2 8 

Tanzania 442,520 6.5 325 
 

Liberia 8,829 0.1 7 

Togo 38,620 0.6 29 
 

Gambia 6,237 0.1 5 

Tunisia 36,597 0.5 27 
 

Mauritania 3,745 0.1 3 

Uganda 121,533 1.8 89 
 

Lesotho 2,913 0.0 2 

Zambia 320,398 4.7 235 
 

Equatorial Guinea 536 0.0 1 

Zimbabwe 213,766 3.1 157 
 

Djibouti 50 0.0 0 
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Land cover area (km2) area (%) psu 

Open forest 3,054,948 44.8 2240 

Cultivated 2,471,727 36.3 1813 

Herbaceous vegetation 690,752 10.1 507 

Closed forest 374,733 5.5 275 

Shrubs 227,109 3.3 167 

  

 

WRB reference soil group* area (km2) area (%)          psu   

Ferralsol 875,245 12.8 642 

Arenosol/Podzol 846,192 12.4 621 

Lixisol 655,362 9.6 481 

Plinthosol 652,968 9.6 479 

Leptosol 605,582 8.9 444 

Luvisol 454,253 6.7 334 

Vertisol 448,667 6.6 329 

Cambisol 446,870 6.6 328 

Acrisol 406,997 6.0 299 

Nitisol 336,020 4.9 247 

Fluvisol 246,326 3.6 181 

Calcisol/Gypsisol/Durisol 180,576 2.7 133 

Regosol 130,560 1.9 96 

Gleysol 124,647 1.8 92 

Solonetz/Solonchack 107,029 1.6 79 

Alisol 101,856 1.5 75 

Phaezem/Chernozem/Kastanozem 95,605 1.4 70 

Stagnosol/Planosol 66,029 1.0 49 

Andosol/Umbrisol 29,656 0.4 22 

Histosol 8,826 0.1 7 
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Annex 5: Sampling frame of the PSUs 

 

The figure below shows an example of the PSU sampling frame. 

 

The following table gives a description of each variable. References are provided in section 

‘Ancillary data’ in Chapter 4. The numbers of the categorical variables represent a specific class. 

Class values of each PSU are determined based on a majority vote considering all agricultural land 

pixels contained within the PSU; values of the continuous variables (excl. easting, northing, 

ag_count) are means calculated from the agricultural land pixels contained within the PSU (also see 

section ‘Stratification of the primary sampling units’ in Chapter 4). 

Variable Description Type 

id unique identifier continuous 

easting longitude (m) continuous 

northing latitude (m) continuous 

ag_count number of agricultural land pixels within 
PSU 

continuous 

admin_0 country categorical 

admin_1 level 1 administrative unit categorical 

aez agro-ecological zone categorical 

landcover land cover class categorical 

soil_cl soil class categorical 

accsblty accessibility (travel time; min) continuous 

pop_dens population density continuous 

lgp length of growing period continuous 

elevation elevation continuous 

twi topographic wetness index continuous 

agrecol agro-ecological class (soil-climate) categorical 

fs2001 farming system, 2001 classification categorical 

fs16lev1 farming system update, level 1 categorical 

fs16lev2 farming system update, level 2 categorical 

pa1 protected area class, layer 1 categorical 

pa2 protected area class, layer 2 categorical 

pa3 protected area class, layer 3 categorical 

protected protected area sampling classification categorical 

sampling sampling indicator binary 

safe safety indicator binary 

 

id easting northing ag_count admin_0 admin_1 aez landcover soil_cl accsblty pop_dens lgp elevation twi agrecol fs2001 fs16lev1 fs16lev2 pa1 pa2 pa3 protected sampling safe

295781 1538612 4156569 31 248 2995 21 126 1 163 163 221 10 112 10 15 12 123 NA NA NA 4 1 1

295782 1540612 4156569 100 248 2995 21 126 1 182 163 220 32 108 10 15 12 123 NA NA NA 4 1 1

295783 1542612 4156569 104 248 2995 21 126 1 178 163 220 63 105 10 15 12 123 NA NA NA 4 1 1

295784 1544612 4156569 98 248 2995 21 126 1 126 163 220 27 110 10 15 12 123 NA NA NA 4 1 1

295785 1546612 4156569 220 248 2995 21 126 1 86 1970 220 14 112 10 15 12 123 NA NA NA 4 1 1

295786 1548612 4156569 93 248 2995 21 40 1 46 1970 218 6 111 10 15 12 123 NA NA NA 4 1 1

295788 1552612 4156569 25 248 2995 21 116 1 74 1970 218 40 107 10 15 12 123 NA NA NA 4 1 1

295789 1554612 4156569 64 248 2995 21 126 1 72 1970 218 80 100 10 15 12 123 NA NA NA 4 1 1

295790 1556612 4156569 32 248 2995 21 126 1 67 1970 217 24 106 10 15 12 123 NA NA NA 4 1 1


